Cover crop resilience to drought

Authors

DOI:

https://doi.org/10.46420/TAES.e240016

Keywords:

Water stress, Urochloa spp., Pennisetum glaucum, Direct planting system

Abstract

Straw production from cover crops and the sustainability of no-tillage farming systems can be compromised by low rainfall during the dry off-season in Central Brazil. This study investigated the drought resilience of five cover crop species under drought stress conditions. Three irrigation levels [100% pot capacity – CV (well-watered conditions), 60% CV (moderate drought stress) and 25% CV (severe drought stress)] and five grass cover crop species [Urochloa brizantha cv. BRS Piatã, U. brizantha cv. Marandu, U. brizantha cv. Xaraés, U. ruziziensis cv. Comum and Pennisetum glaucum cv. ADR 300] were tested using a randomized block design with a 3 × 5 factorial arrangement and three replications. Canonical variable analysis (CVA) and a correlation network were established with the variables evaluated. The CVA showed that 88.6% of the total variation of the data was retained in the first two canonical variables. The plants were exposed to water stress for 25 days during the tillering and stem elongation phases. Plants of the genus Urochloa (U. ruziziensis, U. brizantha cv. Marandu, and U. brizantha cv. Xaraés) showed higher total dry matter production under normal irrigation conditions. However, under moderate water stress conditions, U. ruziziensis was the cover crop with greater resilience, since these conditions culminated in higher dry matter production.

References

Almeida, D. S et al. (2018). Can tropical grasses grown as cover crops improve soil phosphorus availability?. Soil Use and Man., 34, 316–325, DOI: 10.1111/sum.12439.

Ben Kalifa, M. L., Vanvolkenburg, H., &Vasseur, L. (2023). Testing cover crop species under three soil moisture conditions in a controlled greenhouse environment. Can. J. Plant Sci., 103, 175–183. DOI: 10.1139/CJPS-2022-0188.

Benincasa, M. P. M. (2003). Análise de Crescimento de Plantas: Noções Básicas. Editora FUNEP: Jaboticabal, Brazil.

Canalli, L. B. S. (2020). Production and profitability of crop rotation systems in southern Brazil. Semin. Ciências Agrárias, 41, 2541–2554. DOI: 10.5433/1679-0359.2020v41n6p 2541.

Casaroli, D., Lier, Q. J. (2008). Critérios para determinação da capacidade de vaso. Rev. Bras. Ciência Solo, 32, 59–66. DOI: 10.1590/S0100-06832008000100007.

CONAB—Companhia Nacional de Abastecimento (2022). Acompanhamento da Safra Brasileira: Grãos, Safra 2022/23—6° Levantamento. Companhia Nacional de Abastecimento: Brasília-DF, Brazil, p. 97. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 1 April 2023).

Crusciol, C.A.C. et al. (2016). Annual crop rotation of tropical pastures with no-till soil as affected by lime surface application. Eur. J. Agron., 80, 88–104. DOI: 10.1016/j.eja.2016.07.002.

FAO. Food and Agriculture Organization of the United Nations (2020). Food and Agricultural. FAOSTA.

Fariaszewska, A. et al. (2020). Physiological and biochemical responses of forage grass varieties to mild drought stress under field conditions. Int. J. Plant Prod., 14, 335–353. DOI: 10.1007/s42106-020-00088-3.

Farshadfar, E.; Poursiahbidi, M. M.; Abooghadareh, A. R. P. (2012). Repeatability of drought tolerance indices in bread wheat genotypes. Int. J. Agric. Crop Sci., 4. 891–903.

Gualberto, A. V. S. et al. (2023). Organic C fractions in topsoil under different management systems in Northeastern Brazil. Soil Syst., 7, 1–13. DOI: 10.3390/soilsystems7010011.

Hunter, M. C.; Kemanian, A. R.; Mortensen, D. A. (2021). Cover crops and drought: Maize ecophysiology and yield dataset. Data Brief, 35, 106856. DOI: 10.1016/j.dib.2021.106856.

Imakumbili, M. L. E. (2019). Making water stress treatments in pot experiments: An illustrated step-by-step guide. Heliyon, 7, e07331. DOI: 10.17504/protocols.io.2xdgfi6.

Kim, N. et al. (2020). Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem., 142, 107701. DOI: 10.1016/j.soilbio.2019.107701.

Landell, M. G. A., Silva, M. A. (2004). As estratégias de seleção da cana em desenvolvimento no Brasil. Visão Agrícola, 1, 18–23.

Macedo, L. C. P. et al. (2019). Phenology and dry mass production of Urochloa plantaginea and Urochloa platyphylla submitted to different water quantities in the soil. Acta Sci. Biol. Sci., 41, e46127. DOI: 10.4025/actascibiolsci.v41i1.46127.

Nascente, A. S.; Stone, L. F. (2018). Cover crops as affecting soil chemical and physical properties and development of upland rice and soybean cultivated in rotation. Rice Sci., 25, 340–349. DOI: 10.1016/j.rsci.2018.10.004.

Nascimento, V. et al. (2022). Mechanical chiseling and the cover crop effect on the common bean yield in the Brazilian Cerrado. Agriculture, 12, 616. DOI: 10.3390/agriculture12050616.

Nicole, L. R. et al. (2021). Performance of cover crops under two irrigation regimes in the Coastal Tablelands region of Brazil. Rev. Ceres, 68, 301–309. DOI: 10.1590/0034-737X202168040007.

Ntshidi, Z. et al. (2021). Water use of selected cover crop species commonly grown in South African fruit orchards and their response to drought stress. Phys. Chem. Earth, 124, 103070. DOI: 10.1016/j.pce.2021.103070.

Pacheco, L. P. et al. (2013). Development of cover crops under different water levels in the soil. Afr. J. Agric. Res., 8, 2216–2223. DOI: 10.5897/ajar12.1903.

Pacheco, L. P. et al. (2011). Produção e ciclagem de nutrientes por plantas de cobertura nas culturas de arroz de terras altas e de soja. Rev. Bras. Ciência Solo, 35, 1787–1799. DOI: 10.1590/S0100-06832011000500033.

Pariz, C. M. et al. (2020). An innovative corn to silage-grass-legume intercropping system with oversown black oat and soybean to silage in succession for the improvement of nutrient cycling. Front. Sustain. Food Syst., 4, 544996. DOI: 10.3389/fsufs.2020.544996.

Pariz, C. M. et al. (2016). Production and soil responses to intercropping of forage grasses with corn and soybean silage. Agron. J., 108, 2541–2553. DOI: 10.2134/agronj2016.02.0082.

Petter, F. A. et al. (2013). Desempenho de plantas de cobertura submetidas à déficit hídrico. Semin. Ciências Agrárias, 34, 3307–3319. DOI: 10.5433/1679-0359.2013v34n6supl1p3307.

Portugal, J. R. et al. (2020). Do cover crops improve the productivity and industrial quality of upland rice? Agron. J., 112, 327–343. DOI: 10.1002/agj2.20028.

Taiz, L. et al. (2017). Fisiologia vegetal. 6 ed. Porto Alegre: Artemed.

Tardy, F. et al. (2017). Trait-based characterization of soil exploitation strategies of banana, weeds and cover plant species. PLoS ONE, 12, 173066. DOI: 10.1371/journal.pone.0173066.

Timossi, P. C.; Durigan, J. C.; Leite, G. J. (2007). Formação de palhada por braquiárias para adoção do sistema plantio direto. Bragantia, 66, 617–622.

Zuffo, A. M. et al. (2022). Silicon mitigates the effects of moderate drought stress in cover crops. J. Agron. Crop Sci., 208, 887–897. DOI: 10.1111/jac.12548.

Published

2024-12-30

Issue

Section

Articles Section