Temporal variability in soybean sowing and harvesting according to K-means and silhouette scores
DOI:
https://doi.org/10.46420/TAES.e240010Palabras clave:
season, machine learning, cultivar selection, Glycine max (L.) MerrillResumen
Understanding the impact of seasonal variations on soybean productivity is crucial for optimizing agricultural practices. Given the influence of climatic factors such as temperature and rainfall on crop phenology, this study aims to analyze the effects of sowing and harvesting soybean cultivars in different seasons. This research investigates whether sowing soybeans in November and December leads to varying outcomes in terms of productivity and morphological characteristics, focusing on identifying the most stable cultivars across different climatic conditions. The study employed a comprehensive methodology, including data standardization, statistical tests (Levene, Shapiro-Wilk, ANOVA, Wilcoxon), and K-means clustering, to analyze 40 soybean cultivars across two seasons. Statistical preprocessing ensured data accuracy, while clustering helped identify cultivars with consistent responses to climatic changes. All computational analyses were performed using Python in the Google Colab environment. The findings revealed no significant difference in productivity between the two seasons, despite variations in temperature and rainfall. However, the moisture content of the grains (MTG) showed significant differences, influenced by higher rainfall in March and April and increased temperatures in December. K-means clustering highlighted SYN2282IPRO as the most stable cultivar and 77HO111I2X-GUAPORÉ as the most sensitive to climatic changes. The results emphasize the need for careful cultivar selection based on specific adaptability to seasonal variations. This study underscores the potential of computational tools like K-means clustering in agricultural optimization, offering a data-driven approach to selecting stable soybean cultivars. The adaptable methodology can be tailored to different geographical regions, soil types, and climate conditions, enhancing its relevance and applicability. These insights contribute to a better understanding of the complex interactions between climatic variables and soybean phenology, providing a foundation for improving agricultural practices in the face of climate change.
Referencias
Abdulhafedh, A. (2021). Incorporating k-means, hierarchical clustering and pca in customer segmentation. Journal of City and Development, 3(1), 12–30.
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8). https://doi.org/10.3390/electronics9081295
Assefa, Y., Purcell, L. C., Salmeron, M., Naeve, S., Casteel, S. N., Kovács, P., Archontoulis, S., Licht, M., Below, F., Kandel, H., Lindsey, L. E., Gaska, J., Conley, S., Shapiro, C., Orlowski, J. M., Golden, B. R., Kaur, G., Singh, M., Thelen, K., … Ciampitti, I. A. (2019). Assessing Variation in US Soybean Seed Composition (Protein and Oil). Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00298
Bekkanti, A., Gunde, V. P., Itnal, S., Parasa, G., & Basha, C. Z. (2020). Computer based classification of diseased fruit using K-means and support vector machine. Proceedings of the 3rd International Conference on Smart Systems and Inventive Technology, ICSSIT 2020, 1227–1232. https://doi.org/10.1109/ICSSIT48917.2020.9214177
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Grobler, A. G. and J., Layton, R., VanderPlas, J., Joly, A., Holt, B., & Varoquaux, G. (2013). API design for machine learning software: experiences from the scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–122.
Clovis, P. J., Jackson, K., Marcelo, B., Murilo, V. D. C., & Leandro, M. (2015). Phenological and quantitative plant development changes in soybean cultivars caused by sowing date and their relation to yield. African Journal of Agricultural Research, 10(6), 515–523. https://doi.org/10.5897/AJAR2014.9325
Corassa, G. M., Amado, T. J. C., Strieder, M. L., Schwalbert, R., Pires, J. L. F., Carter, P. R., & Ciampitti, I. A. (2018). Optimum Soybean Seeding Rates by Yield Environment in Southern Brazil. Agronomy Journal, 110(6), 2430–2438. https://doi.org/10.2134/agronj2018.04.0239
de Oliveira, B. R., da Silva, A. A. P., Teodoro, L. P. R., de Azevedo, G. B., Azevedo, G. T. de O. S., Baio, F. H. R., Sobrinho, R. L., da Silva Junior, C. A., & Teodoro, P. E. (2021). Eucalyptus growth recognition using machine learning methods and spectral variables. Forest Ecology and Management, 497, 119496. https://doi.org/10.1016/j.foreco.2021.119496
de Oliveira, B. R., Zuffo, A. M., Aguilera, J. G., Steiner, F., Ancca, S. M., Flores, L. A. P., & Gonzales, H. H. S. (2022). Selection of Soybean Genotypes under Drought and Saline Stress Conditions Using Manhattan Distance and TOPSIS. Plants 2022, Vol. 11, Page 2827, 11(21), 2827. https://doi.org/10.3390/PLANTS11212827
de Oliveira, B. R., Zuffo, A. M., dos Santos Silva, F. C., Mezzomo, R., Barrozo, L. M., da Costa Zanatta, T. S., dos Santos, J. C., Sousa, C. H. C., & Coelho, Y. P. (2023). Dataset: Forty soybean cultivars from subsequent harvests. Trends in Agricultural and Environmental Sciences, e230005–e230005.
Gawęda, D., Nowak, A., Haliniarz, M., & Woźniak, A. (2020). Yield and Economic Effectiveness of Soybean Grown Under Different Cropping Systems. International Journal of Plant Production, 14(3), 475–485. https://doi.org/10.1007/s42106-020-00098-1
Grassini, P., Cafaro La Menza, N., Rattalino Edreira, J. I., Monzón, J. P., Tenorio, F. A., & Specht, J. E. (2021). Soybean. In Crop Physiology Case Histories for Major Crops (pp. 282–319). Elsevier. https://doi.org/10.1016/B978-0-12-819194-1.00008-6
He, L., Jin, N., & Yu, Q. (2020). Impacts of climate change and crop management practices on soybean phenology changes in China. Science of The Total Environment, 707, 135638. https://doi.org/10.1016/j.scitotenv.2019.135638
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139
James, G., Witten, D., Hastie, T., Tibshirani, R., & others. (2013). An introduction to statistical learning (Vol. 112). Springer.
Kumagai, E., & Takahashi, T. (2020). Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy, 10(1), 66. https://doi.org/10.3390/agronomy10010066
L Hoffman, A., R Kemanian, A., & E Forest, C. (2020). The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning. Environmental Research Letters, 15(9), 094013. https://doi.org/10.1088/1748-9326/ab7b22
Li, C., & Niu, B. (2020). Design of smart agriculture based on big data and Internet of things. International Journal of Distributed Sensor Networks, 16(5), 155014772091706. https://doi.org/10.1177/1550147720917065
Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, 18(3), 309–331. https://doi.org/10.1007/s11119-016-9491-4
Luiz Piati, G., Ferreira de Lima, S., Lustosa Sobrinho, R., dos Santos, O. F., Vendruscolo, E. P., Jacinto de Oliveira, J., do Nascimento de Araújo, T. A., Mubarak Alwutayd, K., Finatto, T., & AbdElgawad, H. (2023). Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change. Plants, 12(13), 2569. https://doi.org/10.3390/plants12132569
Mourtzinis, S., Specht, J. E., & Conley, S. P. (2019). Defining Optimal Soybean Sowing Dates across the US. Scientific Reports, 9(1), 2800. https://doi.org/10.1038/s41598-019-38971-3
Naghizadeh, A., & Metaxas, D. N. (2020). Condensed Silhouette: An Optimized Filtering Process for Cluster Selection in K-Means. Procedia Computer Science, 176, 205–214. https://doi.org/10.1016/J.PROCS.2020.08.022
Nóia Júnior, R. de S., & Sentelhas, P. C. (2019). Soybean-maize succession in Brazil: Impacts of sowing dates on climate variability, yields and economic profitability. European Journal of Agronomy, 103, 140–151. https://doi.org/10.1016/j.eja.2018.12.008
Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive review of K-Means clustering algorithms. Criterion, 12, 22–23.
Rahamathunnisa, U., Nallakaruppan, M. K., Anith, A., & Kumar K.S., S. (2020). Vegetable Disease Detection Using K-Means Clustering And Svm. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 1308–1311. https://doi.org/10.1109/ICACCS48705.2020.9074434
Roberts, M., & Russo, R. (2014). A Student’s Guide to Analysis of Variance. Routledge. https://doi.org/10.4324/9781315787954
Sharma, P. K. ;, Ferrarezi, S., Kadyampakeni, D. M., Awal, R., Shukla, M. K., & Sharma, P. (2023). Fuzzy K-Means and Principal Component Analysis for Classifying Soil Properties for Efficient Farm Management and Maintaining Soil Health. Sustainability 2023, Vol. 15, 3144, 15(17), 13144. https://doi.org/10.3390/SU151713144
Shedthi, B. S., Shetty, S., & Siddappa, M. (2017). Implementation and comparison of K-means and fuzzy C-means algorithms for agricultural data. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), 105–108. https://doi.org/10.1109/ICICCT.2017.7975168
Soares, I. O., Rezende, P. M., Bruzi, A. T., Zambiazzi, E. V., Zuffo, A. M., Silva, K. B., & Gwinner, R. (2015). Adaptability of soybean cultivars in different crop years. Genetics and Molecular Research, 14(3), 8995–9003. https://doi.org/10.4238/2015.August.7.8
Staniak, M., Szpunar-Krok, E., & Kocira, A. (2023). Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water. Agriculture, 13(1), 146. https://doi.org/10.3390/agriculture13010146
Tambunan, H. B., Barus, D. H., Hartono, J., Alam, A. S., Nugraha, D. A., & Usman, H. H. H. (2020). Electrical peak load clustering analysis using K-means algorithm and silhouette coefficient. Proceeding - 2nd International Conference on Technology and Policy in Electric Power and Energy, ICT-PEP 2020, 258–262. https://doi.org/10.1109/ICT-PEP50916.2020.9249773
Tavakoli, H., Rajabipour, A., & Mohtasebi, S. S. (2009). Moisture-Dependent Some Engineering Properties of Soybean Grains. Agricultural Engineering International: The CIGR Ejournal, XI(1110).
Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition. Elsevier.
Umargono, E., Suseno, J. E., & Gunawan, S. K. V. (2020). K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula. The 2nd International Seminar on Science and Technology (ISSTEC 2019), 121–129.
Umburanas, R. C., Yokoyama, A. H., Balena, L., Dourado-Neto, D., Teixeira, W. F., Zito, R. K., Reichardt, K., & Kawakami, J. (2019). Soybean Yield in Different Sowing Dates and Seeding Rates in a Subtropical Environment. International Journal of Plant Production, 13(2), 117–128. https://doi.org/10.1007/s42106-019-00040-0
Vitantonio‐Mazzini, L. N., Gómez, D., Gambin, B. L., Di Mauro, G., Iglesias, R., Costanzi, J., Jobbágy, E. G., & Borrás, L. (2021). Sowing date, genotype choice, and water environment control soybean yields in central Argentina. Crop Science, 61(1), 715–728. https://doi.org/10.1002/csc2.20315
Yadav, S. A., Sahoo, B. M., Sharma, S., & Das, L. (2020). An Analysis of Data Mining Techniques to Analyze the Effect of Weather on Agriculture. Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020, 29–32. https://doi.org/10.1109/ICIEM48762.2020.9160110
Zuffo, A. M., Steiner, F., Busch, A., & Zoz, T. (2018). Response of early soybean cultivars to nitrogen fertilization associated with Bradyrhizobium japonicum inoculation. Pesquisa Agropecuária Tropical, 48(4), 436–446. https://doi.org/10.1590/1983-40632018v4852637
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Trends in Agricultural and Environmental Sciences
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This is a human-readable summary of (and not a substitute for) the license.