Classification of Tropical Forage Grass Varieties Under Moderate and Severe Water Stress using Naïve Bayes and Kernel Density Estimation
DOI:
https://doi.org/10.46420/TAES.e230006Palavras-chave:
machine learning, smart agriculture, physiological variablesResumo
The selection of forage grasses that are more adapted to adverse conditions, such as water scarcity or dry rain periods, is extremely important. Mainly due to the severe climate changes, and the search for more sustainable ways of farming. Forage grasses form the basis of the diet of beef cattle and are also used as a source of biofuels, for erosion control and soil improvement. This work presents a machine learning methodology to obtain classification models for nine forage cultivars, subject to moderate and severe water stress. The Naïve Bayes algorithm is used together with the Kernel Density Estimation method to obtain the densities used in the classification models. Before learning the models, the grouped cross-validation technique and also the grid search are used to search for the best set of hyperparameters. The best accuracy and precision results are 0.88 and 0.90, respectively. It is observed that the classification performance depends on the cultivars used in the training and test sets. At the end, the estimated probability densities are also analyzed by comparing them with some statistics obtained for each variable and water stress or control environments.
Referências
Al-Aidaroos, K. M., Bakar, A. A., Othman, Z. (2010). Naive Bayes variants in classification learning. In 2010 international conference on information retrieval & knowledge management (CAMP) (pp. 276-281). DOI: 10.1109/INFRKM.2010.5466902
Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758. DOI: 10.3390/s21113758
Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.
Chen, Y. C. (2017). A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 1(1), 161-187. DOI: 10.1080/24709360.2017.1396742
de Oliveira, B. R., Duarte, M. A. Q., Vieira Filho, J. (2022). Premature ventricular contraction recognition using blind source separation and ensemble gaussian naive bayes weighted by analytic hierarchy process. Acta Scientiarum. Technology, 44, e60386-e60386. DOI: 10.4025/actascitechnol.v44i1.60386
de Oliveira, B. R., Zuffo, A. M., Steiner, F., Aguilera, J. G., Gonzales, H. H. S. (2023A). Classification of soybean genotypes during the seedling stage in controlled drought and salt stress environments using the decision tree algorithm. Journal of Agronomy and Crop Science. DOI: 10.1111/jac.12654
de Oliveira, B. R., Duarte, M. A. Q., Zuffo, A. M., Steiner, F., Aguilera, J. G., Dutra, A. F., Alcântara Neto, F., Leite M. R. L., Silva, N. S. G., Salcedo, E. P., Morales-Aranibar, L., Chura, R. C. A., Contreras, W. C. (2023B). Selection of forage grasses for cultivation under water-limited conditions using Manhattan distance and TOPSIS. Plos One. [Manuscript not yet published, but accepted for publication]. DOI: 10.1371/journal.pone.0292076
Domingos, P., Pazzani, M. (1996). Beyond independence: Conditions for the optimality of the simple bayesian classi er. In Proc. 13th Intl. Conf. Machine Learning (pp. 105-112).
Farshadfar, E.; PoursiahbidI, M.M.; Abooghadareh, A.R.P (2012). Repeatability of drought tolerance indices in bread wheat genotypes. Intl. J. Agri. Crop Sci. 4, 891–903.
Feltran-Barbieri R, Féres JG. (2021). Degraded pastures in Brazil: improving livestock production and forest restoration. Royal Society Open Science, 8: e201854. DOI: 10.1098/rsos.201854
Freitas, E. N. D., Alnoch, R. C., Contato, A. G., Nogueira, K. M. V., Crevelin, E. J., Moraes, L. A. B. D., Silva, R. N., Martínez, C. A. and Polizeli, M. D. L. T. (2021). Enzymatic pretreatment with laccases from Lentinus sajor-caju induces structural modification in lignin and enhances the digestibility of tropical forage grass (Panicum maximum) grown under future climate conditions. International Journal of Molecular Sciences, 22(17), 9445. DOI: 10.3390/ijms22179445
Ghimire, S. R., Njarui, D. M., Mutimura, M., Cardoso Arango, J. A., Johnson, L., Gichangi, E., and Djikeng, A. (2015). Climate-smart Brachiaria for improving livestock production in East Africa: Emerging opportunities.
Hand, D. J., Yu, K. (2001). Idiot’s Bayes—not so stupid after all?. International statistical review, 69(3), 385-398. DOI: 10.1111/j.1751-5823.2001.tb00465.x
Habermann, E., Dias de Oliveira, E. A., Contin, D. R., Delvecchio, G., Viciedo, D. O., de Moraes, M. A., Prado, R. M., Costa, K. A. P., Braga, M. R., Martinez, C. A. (2019). Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum, 165(2), 383-402. DOI: 10.1111/ppl.12891
Haykin, S. S. (2009). Neural networks and learning machines. 3ª ed. Pearson.
Iqbal, M. A., Abdul, H., Muzammil, H. S., Imtiaz, H., Tanveer, A., Saira, I., Anser, A. (2019). A meta-analysis of the impact of foliar feeding of micronutrients on productivity and revenue generation of forage crops. Planta Daninha, 37. DOI: 10.1590/S0100-83582019370100046
Jank, L., Santos, M. F., do Valle, C. B., Barrios, S. C., Simeão, R. M. (2021). Forage Genetic Resources in Brazil. In: XXIV International Grassland Congress/XI International Rangeland Congress (Sustainable Use of Grassland and Rangeland Resources for Improved Livelihoods), 2021.
John, G.H., Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, 338-345.
Kotsiantis, S. B., Zaharakis, I. D., Pintelas, P. E. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26, 159-190. DOI: 10.1007/s10462-007-9052-3
Lobato, J. F. P., et al. (2014). Brazilian beef produced on pastures: Sustainable and healthy. Meat science, 98(3), 336-345. DOI: 10.1016/j.meatsci.2014.06.022
Luiz Piati, G.; Ferreira de Lima, S.; Lustosa Sobrinho, R.; dos Santos, O.F.; Vendruscolo, E.P.; Jacinto de Oliveira, J.; do Nascimento de Araújo, T.A.; Mubarak Alwutayd, K.; Finatto, T.; AbdElgawad, H. Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change. Plants 2023, 12, 2569. https://doi.org/10.3390/plants12132569
Meshram, V., Patil, K., Meshram, V., Hanchate, D., Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. DOI: 10.1016/j.ailsci.2021.100010
Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830.
Priya, R., Ramesh, D., Khosla, E. (2018). Crop prediction on the region belts of India: a Naïve Bayes MapReduce precision agricultural model. In 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 99-104). DOI: 10.1109/ICACCI.2018.8554948
Reddy, E. M. K., Gurrala, A., Hasitha, V. B., Kumar, K. V. R. (2022). Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reason. Gaussian Process. Mach. Learn. Appl, 1-14.
Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence. (3)22, 41-46.
Sharma, A., Jain, A., Gupta, P., Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873. DOI: 10.1109/ACCESS.2020.3048415
Silva, R. D. O., Barioni, L. G., Moran, D. (2021). Fire, deforestation, and livestock: When the smoke clears. Land Use Policy, 100, 104949. DOI: 10.1016/j.landusepol.2020.104949
Simeão, R. M., Resende, M. D., Alves, R. S., Pessoa-Filho, M., Azevedo, A. L. S., Jones, C. S., Machado, J. C. (2021). Genomic selection in tropical forage grasses: Current status and future applications. Frontiers in Plant Science, 12, 665195. DOI: 10.3389/fpls.2021.665195
Silva, R. O., Barioni, L. G., Hall, J. A. J., Matsuura, M. F., Albertini, T. Z., Fernandes, F. A., Moran, D. (2016). Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat. Clim. Change 6, 493–497. doi: 10.1038/nclimate2916
Steiner, F., Zuffo, A. M., Silva, K. C., Lima, I. M. O., Ardon, H. J. V. (2020). Cotton response to nitrogen fertilization in the integrated crop-livestock system. Scientia Agraria Paranaensis, 19(3), 211-220. DOI: 10.18188/sap.v19i3.24349
Shreya, S., Sushmitha, S. R., Vaanathe, L. R., Madhumathi, R. (2022). Agro World: A Naive Bayes based System for Providing Agriculture as a Service. In 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1871-1875). DOI: 10.1109/ICICCS53718.2022.9788290
Theodoridis, S., Koutroumbas, K. (2006). Pattern recognition. 2ª ed. Elsevier.
Tomlinson, I. (2013). Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. J. Rural Stud. 29, 81–90. DOI: 10.1016/j.jrurstud.2011.09.001
Unpingco, J. (2016). Python for probability, statistics, and machine learning (Vol. 1). Cham, Switzerland: Springer International Publishing.
Zhang, H. (2004). The optimality of naive Bayes. American Association for Artificial Intelligence, 1(2), 3.
Zuffo, A. M., Steiner, F., Aguilera, J. G., Ratke, R. F., Barrozo, L. M., Mezzomo, R., Santos, A. S. d., Gonzales, H. H. S., Cubillas, P. A., Ancca, S. M. (2022). Selected indices to identify water-stress-tolerant tropical forage grasses. Plants, 11(18), 2444. DOI: 10.3390/plants11182444
Węglarczyk, S. (2018). Kernel density estimation and its application. In ITM Web of Conferences: XLVIII Seminar of Applied Mathematics, 23, 00037. DOI: 10.1051/itmconf/20182300037
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277-2293. DOI: 10.1007/s00500-020-05297-6
Yudhana, A., Sulistyo, D., Mufandi, I. (2021). GIS-based and Naïve Bayes for nitrogen soil mapping in Lendah, Indonesia. Sensing and Bio-Sensing Research, 33, 100435. DOI: 10.1016/j.sbsr.2021.100435
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Trends in Agricultural and Environmental Sciences
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This is a human-readable summary of (and not a substitute for) the license.