Bacillus aryabhattai dose recommendation for corn seed inoculation

Autores

DOI:

https://doi.org/10.46420/TAES.e240003

Palavras-chave:

Zea mays, plant growth-promoting bacteria, biotechnology, optimal inoculant dose

Resumo

The use of plant growth-promoting bacteria (PGPB) can be a sustainable alternative to improve the uniformity and speed of emergence and initial growth of plants. However, the effects of Bacillus aryabhattai inoculation are still incipient and inconclusive, and there is no recommendation for the use of inoculant doses containing B. aryabhattai. This study was conducted to investigate the effectiveness of B. aryabhattai inoculation in improving the germination and initial growth of corn plants (Zea mays L.), and to determine the optimal inoculant dose to be recommended for inoculation of corn seeds. Corn seeds were inoculated with 0, 10, 20, 30 and 40-mL kg–1 of the inoculant containing the strain CMAA 1363 of Bacillus aryabhattai. Four replicates of 50 seeds were sown in plastic boxes containing washed coarse sand. At 18 days after sowing, the emergence rate (E), shoot length (SL), root length (RL), shoot dry matter (SDM) and root dry matter (RDM) was recorded. The results showed that the use of inoculant containing B. aryabhattai improved the initial growth and dry matter production of corn plants. This suggests that B. aryabhattai could be an excellent option for producing microbiological inoculants with enormous potential for use in Brazilian and global agriculture. The optimal dose of inoculant containing B. aryabhattai to be applied to corn seeds can range between 20 and 22-mL kg–1 of inoculant.

Referências

Ahmad, M.; Adil, Z.; Hussain, A.; Mumtaz, M. Z.; Nafees, M.; Ahmad, I.; & Jamil, M. (2019). Potential of phosphate solubilizing bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pakistan Journal of Agricultural Sciences, 56(2), 283–289. DOI: 10.21162/PAKJAS/19.7285

Al-Tammar, F. K.; & Khalifa, A. Y. Z. (2022). Plant growth promoting bacteria drive food security. Brazilian Journal of Biology, 82, e267257. DOI: 10.1590/1519-6984.267257

Ansari, F. A.; Ahmad, I.; & And Pichtel, J. (2019). Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology, 143: 45–54, 2019. DOI: 10.1016/j.apsoil.2019.05.023

Antil, S.; Kumar, R.; Pathak, D.V.; Kumar, A.; Panwar, A.; Kumari, A; & Kumar, V. (2021). On the potential of Bacillus aryabhattai KMT-4 against Meloidogyne javanica. Egyptian Journal of Biological Pest Control, 31: e67. DOI: 10.1186/s41938-021-00417-2

Ayaz, M.; Ali, Q.; Jiang, Q.; Wang, R.; Wang, Z.; Mu, G.; Khan, S. A.; Khan, A. R.; Manghwar, H.; & Wu, H. (2022). Salt tolerant Bacillus strains improve plant growth traits and regulation of phytohormones in wheat under salinity stress. Plants, 11(20): e2769. DOI: 10.3390/plants11202769

Das, S.; Ray, M. K.; Panday, D.; & Mishra, P. K. (2023). Role of biotechnology in creating sustainable agriculture. PLOS Sustainability and Transformation, 2(7), e0000069. DOI: 10.1371/journal.pstr.0000069

Daszkiewicz, T. (2022). Food production in the context of global developmental challenges. Agriculture, 12(6), e832. DOI: 10.3390/agriculture12060832

Ferreira, N. C.; Mazzuchelli, R. C. L.; Pacheco, A. C.; Araujo, F. F.; Antunes, J. E. L.; Araujo, A. S. F. (2018). Bacillus subtilis improves maize tolerance to salinity. Ciência Rural, 48(8), e20170910. DOI: 10.1590/0103-8478cr20170910

Fiodor, A.; Ajijah, N.; Dziewit, L.; & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. DOI: 10.3389/fmicb.2023.1142966

Ibarra-Villarreal, A. L.; Gándara-Ledezma, A.; Godoy-Flores, A. D.; Herrera-Sepúlveda, A.; Díaz-Rodríguez, A. M.; Parra-Cota, F. I.; Santos-Villalobos, S. (2021). Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum)., Journal of Arid Environments, 186: e104399. DOI: 10.1016/j.jaridenv.2020.104399.

Khan, A.; Zhao, X. Q.; Javed, M. T.; Khan, K. S.; Bano, A.; Shen, R. F. (2016). Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environmental and Experimental Botany, 124, 120–129. DOI: 10.1016/j.envexpbot.2015.12.011

Liu, S.; Hao, H.; Lu, X.; Zhao, X.; Wang, Y.; Zhang, Y. (2017) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific Reports, 7: 10795. DOI: 10.1038/s41598-017-11308-8

Nautiyal, C. S.; Srivastava, S.; Chauhan, P. S.; Seem, K.; Mishra, A.; Sopory, S. K (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 66: 1–9. DOI: 10.1016/j.plaphy.2013.01.020

Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z. K.; Khan, A. L.; Khan, A.; Al-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21–32. DOI: 10.1016/j.micres.2018.02.003.

Ramesh, A.; Sharma, S. K.; Sharma, M. P.; Yadav, N.; Joshi, O. P. (2014). Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology, 73, 87-96. DOI: 10.1016/j.apsoil.2013.08.009.

Ranjha, M. M. A. N.; Shafique, B.; Khalid, W.; Nadeem, H. R.; Mueen-ud-Din, G.; & Hhalid, M. Z. (2022). Applications of biotechnology in food and agriculture: a mini-review. Proceedings of the National Academy of Sciences, India Section B. 92, 11–15. DOI: 10.1007/s40011-021-01320-4

Sarkar, A.; Ghosh, P. K.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; & Maiti, T. K. (2018). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 169(1, 20-32.

Souza, R.; Ambrosini, A.; & Passaglia, L. M. P..(2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. DOI: 10.1590/S1415-475738420150053

Steinwand, M. A.; & Ronald, P. C. (2020). Crop biotechnology and the future of food. Nature Food, 1, 273–283. DOI: 10.1038/s43016-020-0072-3

Upadhyay, S. K.; Singh, D. P. (2015). Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17: 288–293. DOI: 10.1111/plb.12173

Zarocostas, J. 2022. The UN reports global asymmetries in population growth. World Report, 400, 10347, 148. DOI: 10.1016/S0140-6736(22)01323-X

Downloads

Publicado

2024-04-20

Edição

Seção

Seção Artigos