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Abstract: The selection of forage grasses that are more adapted to adverse conditions, such as 
water scarcity or dry rain periods, is extremely important. Mainly due to the severe climate 
changes, and the search for more sustainable ways of farming. Forage grasses form the basis 
of the diet of beef cattle and are also used as a source of biofuels, for erosion control and soil 
improvement. This work presents a machine learning methodology to obtain classification 
models for nine forage cultivars, subject to moderate and severe water stress. The Naïve Bayes 
algorithm is used together with the Kernel Density Estimation method to obtain the densities 
used in the classification models. Before learning the models, the grouped cross-validation 
technique and also the grid search are used to search for the best set of hyperparameters. The 
best accuracy and precision results are 0.88 and 0.90, respectively. It is observed that the 
classification performance depends on the cultivars used in the training and test sets. At the 
end, the estimated probability densities are also analyzed by comparing them with some 
statistics obtained for each variable and water stress or control environments. The proposed 
methodology is a complementary approach to classical statistical methods. It provides abstract 
models for obtaining information about the cultivar's harvesting environment. 

Keywords: machine learning; smart agriculture; physiological variables. 

______________ 

1. Introduction 

Tropical forage grasses are an important food source for livestock in tropical and subtropical 
regions. They are an essential component for ruminant animal production around the world. 
They provide essential nutrients for animal health and performance, including protein, fiber, 
energy, vitamins and minerals (Iqbal et al., 2019). They are also used for erosion control 
(Ghimire et al., 2015), soil improvement and biofuel production (Freitas et al., 2021). They are 
suited to the hot, humid conditions of tropical and subtropical regions and are also relatively 
drought tolerant and can be grown on marginal lands. Its importance is increasing due to the 
growing demand for animal feed. The world population is expected to reach 9.7 billion by 2050, 
which will put pressure on the global food supply (FAO, 2023). Raising animals for food 
production is one way to meet this demand, but it requires a reliable source of high-quality 
forage. Furthermore, considering issues related to sustainability, it is essential to obtain varieties 
of forage grasses that produce more in smaller spaces (Simeão et al., 2021), thus avoiding the 
deforestation of new areas. Although forage grasses have advantages for tropical regions, there 
are still some challenges to overcome in their production. One of them is the need to develop 
more efficient production methods. Another is the need to develop new varieties of forage 
grasses in genetic improvement programs that are resistant to pests, water stress and diseases 
(Jank et al., 2021). Climate change has increased the likelihood of extreme weather events, 
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presenting substantial obstacles to agricultural production. Agriculture relies heavily on 
consistent seasonal weather patterns, particularly with regard to rainfall patterns, which are 
among the main factors directly affecting plant cultivation (Luiz Piati et al., 2023). In this sense, 
the selection of forage grasses that are best adapted to these adverse conditions, such as water 
scarcity or periods of excess rainfall, is very important. 

In the Brazilian Cerrado region the most tropical forage grasses used in livestock and agriculture 
systems are Urochloa, Cynodon, Panicum, Paspalum and Pennisetum. Zuffo et al. (2022) studied the 
cultivars Urochloa brizantha cv. BRS Piatã, U. brizantha cv. Marandu, U. brizantha cv. Xaraés, U. 
ruziziensis cv. Common, Pennisetum glaucum cv. ADR 300, Panicum maximum cv. Aruana, P. 
maximum cv. Mombaça, P. maximum cv. Tanzania, Paspalum atratum cv. Pojuca, to identify indices 
of tolerance to water stress. Since the quality of forage is an important factor for animal 
productivity, being influenced by several factors, including micronutrients (Iqbal et al., 2019) 
and the water stress (Habermann et al., 2019), such studies are essential. For this reason, a recent 
study conducted by de De Oliveira et al. (2023b) reevaluated the data presented by Zuffo et al. 
(2022) and presented a new approach for selecting forage cultivars subject to water stress. 

Machine learning methods have been widely employed in agriculture in recent years (Meshram 
et al., 2021; Benos et al., 2021; Sharma et al., 2020). Applications include: analysis of pre-harvest 
parameters such as seeds and soil, and also post-harvest such as productivity, plant height, 
among others (Meshram et al., 2021). Benos et al. (2021) in their meta-analysis found that 68% 
of applications are related to crop management, 12% to livestock management, 10% to water 
management and the remaining 10% to soil management. Crop management applications are 
related to yield forecast, disease and weed detection, and crop and quality recognition. 

Given the relevance of using machine learning methods in agriculture and also the importance 
of the research carried out by Zuffo et al. (2022), in this work we propose the use of such 
methods to obtain classification models for forage grasses subject to water stress. The analyzes 
performed by Zuffo et al. (2022) consisted of classical statistical, such as ANOVA, canonical 
correction analysis, correlation networks and also the use of tolerance indices proposed by 
Farshadfar et al. (2012). And in the selection method presented by De Oliveira et al. (2023b), 
Manhattan distances and TOPSIS were used. Therefore, machine learning methods have not 
yet been applied to data from the research conducted by Zuffo et al. (2022). 

The main objective of this research is to use machine learning methods to obtain classification 
models. These models must classify samples of forage cultivars into three soil water regimes 
(class): “Control”, “Moderate” and “Severe”. To this end, we chose to use the Naïve Bayes 
algorithm, due to its advantages mentioned later. The generated models are probability 
distributions for each class and each variable. In addition to this approach, the Kernel Density 
Estimation (KDE) method is also used. With KDE we were able to generate more complex 
probability densities, enabling more accurate modeling. 

The remainder of this work is divided as follows: in section 2 we present the experimental data 
obtained by Zuffo et al. (2022) and we also explain the concepts related to machine learning, so 
that the reader understands how the data was modeled; in section 3 we present the results 
obtained in the adjustment stage of the classification models, and also the performance results 
of these models; in addition, discussions of these results and possible applications of the 
proposed methodology are performed, as well as discussions of future works. 

2. Material and Methods 

2.1 Experimental data 

The data were obtained from the experiment conducted at Cassilândia, Mato Grosso do Sul, 
Brazil (19º05’29’’S and 51º48’50’’W, and altitude of 540 m) from May to August 2019. In the 
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experiment, nine cultivars of tropical forage grasses were used: Urochloa brizantha cv. BRS Piatã, 
U. brizantha cv. Marandu, U. brizantha cv. Xaraés, U. ruziziensis cv. Comum, Pennisetum glaucum 
cv. ADR 300, Panicum maximum cv. Aruana, P. maximum cv. Mombaça, P. maximum cv. Tanzânia, 
Paspalum atratum cv. Pojuca, and three soil water regimes: high soil water regime (Control), 
medium soil water regime (Moderate) and low soil water regime (Severe). The experiment was 
organized in an experimental design in completely randomized blocks in a 3 × 9 factorial 
arrangement with four replications. There were used seeds of nine tropical forage cultivars, three 
commercial cultivars of Urochloa brizantha (Hochst. Ex A. Rich.) R.D.Webster (‘BRS Piatã’, 
‘Marandu’, and ‘Xaraés’), three commercial cultivars of Panicum maximum Jacq. (‘Aruana’, 
‘Mombaça’, and ‘Tanzânia’), one commercial cultivar of Pennisetum glaucum (L.) R. Br. (‘ADR 
300’), one commercial cultivar of Urochloa ruziziensis (R. Germ. & C.M. Evrard) Crins (‘Comum’), 
and a commercial cultivar of Paspalum atratum Swallen (‘Pojuca’) (Zuffo et al., 2022). 

2.2 Machine Learning, Naïve Bayes and Kernel Density Estimation 

Machine learning is the field of artificial intelligence that allows computers to learn without 
being explicitly programmed. One of its main objectives is pattern recognition. In supervised 

learning, each data sample (pattern) 𝒅 is associated with a label 𝑙. These samples are vectors, 

i.e., 𝒅 = [𝑑1 𝑑2 … 𝑑𝑁] (Haykin, 2009; Theodoridis and Koutroumbas, 2006). The aim is then 

to learn a function (model) 𝑓(𝑑) = 𝐿 that is an estimate of a real function 𝑓(𝑑)  =  𝐿, which is 
unknown (given the complex nature of association and interaction of the data). In other words, 

we want a model that, for a given input 𝒅 with 𝑁 attributes, returns an output (label or class) 𝑙. 
Dataset 𝐷 contains all 𝒅 patterns from the analyzed data. To learn these models, 𝐷 is divided 
into two subsets: training and testing (Bishop, 2006). The first is used to learn the models. The 
second is used to test/validate the learned models. To ensure that this choice does not bias the 

models, the 𝐾-fold cross-validation methodology is used (Unpingco, 2016). This methodology 

consists of subdividing the data set into 𝐾 partitions (folds). One of them is used for testing 

and the others for training. This is done 𝐾 times, until all subsets have been used for testing. 
Finally, the average of the evaluation results is used to estimate the generalization ability of the 
learned model. The algorithms used to learn these models are quite diverse, for example: 
Logistic Regression, Naïve Bayes, Decision Tree, Artificial Neural Networks, K-Nearest 
Neighbors, Support Vector Machines, Artificial Immune System, among others (Haykin, 2009; 
Theodoridis and Koutroumbas, 2006; Bishop, 2006). 

Naïve Bayes is one of the most popular machine learning algorithms (Reddy et al., 2022).  
According to Settouti et al. (2016), Naïve Bayes is one of the top performing algorithms for data 
mining. This algorithm has been used in the most diverse areas, such as: spam detection, product 
recommendations, medical diagnosis, identification software bugs, healthcare, cyber security, 
education, agriculture services, soil mapping, crop prediction and autonomous system (De 
Oliveira, Duarte, and Vieira Filho, 2022; Shreya et al., 2022; Wickramasinghe and Kalutarage, 
2021; Yudhana, Sulistyo, and Mufandi, 2021; Priya, Ramesh, and Khosla, 2018). The Naïve 
Bayes algorithm has several advantages. Firstly, its simplicity and computational efficiency stand 
out (Kotsiantis, Zaharakis and Pintelas, 2006). Therefore, it is suitable for voluminous and real-
time datasets. Furthermore, it is particularly useful when dealing with categorical or textual data. 
Another notable advantage is its ability to deal with imbalanced datasets, where classes have 
very different sizes. Furthermore, it is a good starting point in classification tasks, allowing rapid 
prototyping and performance benchmarking (Wickramasinghe and Kalutarage, 2021; 
Kotsiantis, Zaharakis and Pintelas, 2006). The models generated by the algorithm are 
transparent, as they are obtained from the probability distributions of the attributes (Al-
Aidaroos, Bakar and Othman, 2010). Naïve Bayes is also robust to errors during execution 
(Wickramasinghe and Kalutarage, 2021). However, the algorithm also has some disadvantages, 
such as the assumption of conditional independence between the predictor variables, which can 
lead to suboptimal results when this assumption is not valid. However, in practice it has been 
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noticed that violating this assumption does not affect performance results greatly (Hand and 
Yu, 2001). Some authors have suggested that the hypothesis of conditional independence is a 
sufficient condition, but not necessary for the optimal application of the Naïve Bayes algorithm 
(Zhang, 2004; Hand and Yu, 2001; Rish, 2001; Domingos and Pazzani, 1996). 

Learning the parameters of the Naïve Bayes algorithm is based only on the calculation of 
probabilities. Therefore, it is a low computational cost algorithm. It is based on two assumptions 
(John & Langley, 1995): 

I) Bayes rule, i.e.,  

𝑝(𝑦|𝒙) = 𝑝(𝒙|𝑦)𝑝(𝑦)/𝑝(𝒙), 

where 𝑝(𝒙) and 𝑝(𝑦) are prior probabilities of features vector (𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑄]) and classes, 

respectively, and 𝑝(𝑦|𝒙) and 𝑝(𝒙|𝑦) are posterior probabilities; 

II) statistical independence of features, i.e., 

𝑝(𝒙|𝑦) = ∏ 𝑝(𝑥𝑞|𝑦)𝑄
𝑞=1 , 

where 𝑥𝑞 ∈ ℝ𝑁 is the 𝑞-th feature with 𝑁 samples. 

One choice that must be made is the density function to be used to calculate 𝑝(𝑥𝑞|𝑦𝑘) for each 

𝑦𝑘  class. If the probability distribution of the variable (feature) is not known a priori (or cannot 
be approximated by a known distribution such as the Gaussian which is often used), then the 
Kernel Density Estimation (KDE) method can be employed. It is a non-parametric method 
that estimates the probability distribution from the dataset, without any assumptions regarding 
this distribution. This flexibility makes KDE a very popular method (Chen, 2017). The objective 

of this method is to estimate a density function using a kernel function 𝐾(𝑡), such that 

𝑓(𝑥𝑞) =
1

𝑁ℎ
∑ 𝐾 (

𝑡 − 𝑥𝑞𝑛

ℎ
)

𝑁

𝑛=1

 

is an estimation of 𝑓(𝑥𝑞), where ℎ is the smoothing parameter called bandwidth that influences 

in the shape of the estimated kernel. In addition, there is the hyperparameter “metric” that 
accepts distance measurements and is used by the Scikit-learn algorithm (Pedregosa et al., 2011).  
Tables 1 and 2 show respectively the main distance metrics and the most common kernels with 
their formulations (Pedregosa et al., 2011). 

Table 1. Distance formulas, considering two vectors 𝒙 = [𝑥1 𝑥2 … 𝑥𝑁] e 𝒚 = [𝑦1 𝑦2 … 𝑦𝑁] in the 𝑁-dimentional space. 

Distance name Formula 

Euclidian dist(𝒙, 𝒚) = √∑(𝑥𝑛 − 𝑦𝑛)2

𝑁

𝑛=1

 

Manhattan dist(𝒙, 𝒚) = ∑|𝑥𝑛 − 𝑦𝑛|

𝑁

𝑛=1

 

Chebyshev dist(𝒙, 𝒚) = max(|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|, . . . , |𝑥𝑁 − 𝑦𝑁|) 
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Table 2. Kernel formulas. Source: (Węglarczyk, 2018). 

Kernel name Formula 

Gaussian 𝐾(𝑡) =
1

√2𝜋𝜎
𝑒−(𝑡−𝜇)2/2𝜎2

 

Tophat 𝐾(𝑡) =
1

2ℎ
 

Epanechnikov 𝐾(𝑡) = {

3

4√5
(1 −

1

5
𝑡)

2

, |𝑡| < √5

0,                             |𝑡| ≥ √5

 

Exponential 𝐾(𝑡) = 𝑒−𝑡 

Linear 𝐾(𝑡) = 1 − 𝑡 

Cosine 𝐾(𝑡) = cos (
𝜋

2
𝑡) 

 

Hyperparameters must be fixed before presenting data to the machine learning algorithm. That 
is, they are not actually learned, unlike the model parameters. However, you can use the data to 
check which set of hyperparameters provides the best results, fix them, and then learn the model 
parameters. 

In summary, KDE smooths data points using a kernel function. It then sums the bumps to 
estimate the density of the data. Thus, regions with many observations will have a high-density 
value, while regions with few observations will have a low-density value (Chen, 2017). Figure 1 
shows application of KDE (using a bandwidth equal to 0.5) to estimate a probability density 
function with a complex format as it has two modes (bimodal). To this end, two types of kernel 
functions were used, namely: Gaussian and Exponential, which generate very similar results for 
the example shown. 

 

Figure 1. Application of the KDE method to estimate a probability density (black line) using the Gaussian (red dotted line) and 
Exponential (blue dotted line) kernel functions, for data points in green. 
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2.3 Proposed approach 

First, the Shapiro-Wilk test is used to assess whether some of the variables have a Gaussian 
distribution, to verify the need of KDE use to obtain probability densities. Next, to implement 
KDE it is necessary to choose three hyperparameters: bandwidth, kernel and distance. So that 
this choice is not arbitrary, the Grid search algorithm (Pedregosa et al., 2011) is applied, which 
tests all combinations of these hyperparameters. For bandwidth, 100 values between 1 and 10² 
are tested. For kernel and distance, those in Tables 1 and 2 are respectively evaluated. Grouped 
cross-validation is used, ensuring that data from the same cultivar are not used in training and 
testing simultaneously, avoiding biasing the models. Five folds (subsets) are used in each of the 
5 iterations, 4 of which are used for training and 1 for testing.  

After obtaining the best set of hyperparameters, grouped cross-validation with 5 folds is used 
again to finally obtain the classification models. For each model obtained in each of the 5 
iterations, accuracy (Acc), precision (Pr), and F1 score measures are calculated, according to the 
respective formulations: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,    𝑃𝑟 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
,  and    𝐹1 =

2𝑃𝑟𝑅𝑒

𝑃𝑟+𝑅𝑒
, 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are true positive, true negative, false positive, and false negative, 

respectively, and 𝑅𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁).  The average confusion matrix is also calculated. 
Finally, the estimated probability densities for each class and variable are detailed. 

 

3. Results and Discussion 

In the previous section it was mentioned that the choice of the probability density function is 
essential in implementing the Naïve Bayes algorithm. The parameters of the classification 
models will be fitted according to this choice. One of the most used density functions is the 
Gaussian (Normal). To find out whether the variables have a normal distribution, the Shapiro-
Wilk test is applied for each water stress class: “Control”, “Moderate” and “Severe”. Table 3 
shows the statistic of the Shapiro-Wilk test, the p-values, the Fisher’s kurtosis and the Skewness 
(based on Fisher-Pearson coefficient), for each variable, and the conclusion whether or not the 
variable has a normal distribution (column “Normal?”). These tests are performed for all data. 

Table 3. Shapiro-Wilk test results for each variable, Fisher’s kurtosis and the Skewness. 

Class Variable Statistic p-value Fisher’s kurtosis Skewness Normal? 

Control 

PH 0.7908 0.0000 2.1299 1.6312 No 
NT 0.9607 0.3845 0.0961 0.2456 Yes 

NGL 0.7624 0.0000 1.9722 1.6790 No 
RV 0.9610 0.3905 -0.8979 0.2423 Yes 
LA 0.9698 0.5982 -0.1728 -0.1925 Yes 

SDM 0.9557 0.2948 0.8316 0.8267 Yes 
RDM 0.9455 0.1669 0.4463 0.4410 Yes 

Moderate 

PH 0.7547 0.0000 2.3672 1.8044 No 
NT 0.8364 0.0006 5.4796 1.8327 No 

NGL 0.7437 0.0000 1.7697 1.6883 No 
RV 0.9758 0.7586 -0.2837 -0.2038 Yes 
LA 0.9672 0.5322 -0.7611 -0.0441 Yes 

SDM 0.9624 0.4203 -0.0966 -0.0242 Yes 
RDM 0.9496 0.2107 0.7465 0.6442 Yes 

Severe 

PH 0.9452 0.1644 -0.1216 0.7378 Yes 
NT 0.9735 0.6971 -0.4310 0.3314 Yes 

NGL 0.8424 0.0008 1.8199 1.4282 No 
RV 0.9684 0.5619 0.0894 0.5545 Yes 
LA 0.9299 0.0690 -0.6930 -0.5398 Yes 
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Class Variable Statistic p-value Fisher’s kurtosis Skewness Normal? 
SDM 0.9122 0.0258 -0.9952 0.5094 No 
RDM 0.9774 0.7996 -0.3958 0.1258 Yes 

“Normal?” column tells whether the distribution is normal or not, depending on the p-value. 

From the results in Table 3, considering a significance level of 5% and that the null hypothesis 
is that the distribution of the variable is Gaussian, depending on the water stress class, we accept 
or reject this hypothesis, based on p-values. In addition to the p-values, Fisher’s kurtosis and 
skewness statistics also inform about the distribution of the data. The closer its values are to 
zero, the more the distribution approaches Gaussian. Therefore, for variables whose column 
value “Normal?” in Table 3 is equal to “No”, KDE should be used to model the probability 
density functions employed in the classification. For the other variables, the use of the Gaussian 
distribution for modeling is appropriate. 

Using the Grid search algorithm for 5 folds returns the results in Table 4, where it appears that 
the “Euclidean” distance, the “Gaussian” kernel and the bandwidth equal to 1.0, generated the 
highest accuracy in the test data. The kernel choice is expected, as it was noted in Table 4 that 
most variables have a normal (Gaussian) distribution. Therefore, choosing the Gaussian kernel 
is the one that will bring the best results. Although KDE could be used exclusively for those 
variables that do not have a normal distribution, as seen in the results in Table 4 there is no 
consistency between the classes. In other words, some variables have a normal distribution for 
one class but not for another. Therefore, due to issues related to the computational 
implementation of machine learning algorithms, we chose to use KDE for all variables. 
However, as the kernel choice is the Gaussian model, for those variables with normal 
distribution, the KDE estimation will be very close to what we would obtain using the Gaussian 
model directly. 

Table 4. Best hyperparameters obtained for each fold in grouped cross-validation. Accuracy is measured on the test set. 

Fold Bandwidth Distance Kernel Mean accuracy ± Std. 
1 1.0 Euclidean Gaussian 0.7555 ± 0.0902 
2 1.0 Euclidean Tophat 0.3333 ± 0.0000 
3 1.0 Euclidean Epanechnikov 0.3333 ± 0.0000 
4 1.0 Euclidean Exponential 0.7111 ± 0.0888 
5 1.0 Euclidean Linear 0.3333 ± 0.0000 

Std. means Standard deviation. 

Table 4 shows only the average results of applying cross-validation on the training set 
considering non-overlapping groups (cultivars). To check how the hyperparameters change, two 
of the best hyperparameters are fixed and the other varies. For each tested value, the accuracy 
is computed. Figures 2, 3, and 4 display the average results of this implementation for the 
training and testing sets separately. In all cases considering grouped cross-validation with 5 folds. 

In Figure 2 it is observed that the accuracy reaches the maximum (0.7666) in the test set when 
the bandwidth is equal to 1.1497. While the accuracy on this set fluctuates from this value, for 
the training set it always decreases. This value is different from that presented in Table 4, because 
the table shows the average value among the folds. 
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Figure 2. Graph of bandwidth versus accuracy for training (Train) and test (Test) data, keeping the other hyperparameters fixed. 

From Figures 3 and 4 it is observed that any choice of kernel and distance metric results in 
maximum accuracy in the training set. On the other hand, in the test set the Gaussian kernel 
and the Chebyshev metric present higher accuracies than the other choices. What is new in this 
result is the Chebyshev metric that did not appear in Table 4. It is noted that in the test set, it 
results in slightly higher accuracy than the Euclidean distance metric, with a value of 0.7777. 

 

Figure 3. Accuracy for different kernel choices, for the (a) training and (b) test sets, keeping the other hyperparameters fixed, according to 
Table 4. 

 

Figure 4. Accuracy for different distance function choices, for the (a) training and (b) test sets, keeping the other hyperparameters fixed, 
according to Table 4. 

Based on the results presented in Table 4 and Figures 2, 3 and 4, we chose to set the 
hyperparameters as: bandwidth at 1.1497, Gaussian kernel and the Chebyshev metric as a 
distance measure. 
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The boxplot graph in Figure 5 displays the performance measures for the training [Figure 5 (a)] 
and test [Figure 5 (b)] sets, when employing grouped cross-validation with 5 folds. From this 
graph it can be seen that the patterns in the training set were learned perfectly, regardless of the 
data used (fold). On the other hand, as in the test set, we have values varying from 0.66 to 0.91, 
depending on the chosen fold, showing that the generalization capacity is variable.  

 

Figure 5. Boxplot showing the accuracy (Acc), precision (Pr) and F1 score measurements for the (a) training and (b) test sets. 

This variation in the test set can be explained by the fact that certain cultivars present 
unrepresentative patterns. As the grouped cross-validation approach was used, the patterns of 
some cultivars were not adequately learned in the training stage. Table 5 details the cultivars 
used in the training and testing stages, and displays the accuracy of this last stage. The “Errors 
in Test” column displays the cultivar and the number of prediction errors. It can be seen that 
there was a decrease in accuracy for fold 5, as in this case only the 9 samples from “Marandu” 
cultivar were used for testing. It can also be seen that the “Pojuca” cultivar was the one that 
generated the most prediction errors, indicating that the patterns of this cultivar were not 
learned adequately from the other cultivars employed in training stage. 

Table 5. Cultivars used in the training and testing stages and results in the test stage.  

Fold Training Test Accuracy (Test) Errors in Test 

1 
ADR 300, Aruana, BRS Piatã, 
Marandu, Mombaça, Pojuca, 
Tanzânia 

Comum, Xaraés 0.8889 
Comum: 1 
Xaraés: 1 

2 
ADR 300, Aruana, Comum, 
Marandu, Mombaça, Pojuca, 
Xaraés 

BRS Piatã, Tanzânia 0.7222 
BRS Piatã: 2 
Tanzânia: 3 

3 
ADR 300, BRS Piatã, 
Comum, Marandu, 
Mombaça, Tanzânia, Xaraés 

Aruana, Pojuca 0.7222 
Aruana: 1 
Pojuca: 4 

4 
Aruana, BRS Piatã, Comum, 
Marandu, Pojuca, Tanzânia, 
Xaraés 

ADR 300, Mombaça 0.8333 
ADR 300: 3 
Mombaça: 0 

5 
ADR 300, Aruana, BRS Piatã, 
Comum, Mombaça, Pojuca, 
Tanzânia, Xaraés 

Marandu 0.6667 Marandu: 3 

 

In the results presented by De Oliveira et al. (2023b) the authors conclude that the “ADR 300” 
cultivar presents less variation in water stress environments, when compared to the “Control” 
water regime. Meanwhile, the “Tanzânia” cultivar is the one that presents the greatest change. 
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Regardless of the weights assigned to stressed environments in TOPSIS, the “Tanzânia” is 
always the one that most varies the most, while “ADR 300” is always the one that varies the 
least, in relation to the “Control” water regime. The “Pojuca” and “Marandu” cultivars alternate 
between second and third position, depending on the weights set. While the cultivars “Comum”, 
“Pojuca”, “Marandu” and “Tanzânia” present extreme values. These results partially explain the 
errors returned in the test set (last column of Table 2). Because, these cultivars present patterns 
that are more difficult to learn than other cultivars. 

The average confusion matrices in Figure 6 show the comparison of predictions between 
classes. In Figure 6 (a) it can be seen that there was no confusion in the classifications, because 
as previously observed, in the training stage, the patterns were learned perfectly. But in the 
testing stage, Figure 6 (b), it is observed that there was greater confusion in classifying the 
examples into the “Control” and “Moderate” classes. On average, 1.6 examples from the 
“Control” class were classified as being from the “Moderate” class. On the other hand, no 
example of the “Control” class was mistakenly classified as the “Severe” class. While, on average 
0.6 of the examples from the “Moderate” class were misclassified as being from the “Control” 
or “Severe” classes. These results are consistent with the characteristics of soil water regimes, 
as the “Moderate” regime is intermediate between “Control” and “Severe”. Therefore, the 
changes caused in the measured variables, and consequently in the modeled patterns, partly 
reflect this relationship. 

 

Figure 6. Average confusion matrix for the 5 folds, showing the comparison of predictions per class, in the (a) training (b) testing steps. 

Finally, Figure 7 shows the probability densities obtained for each variable and each class, 
separately. It is noted that the estimated densities for some variables have complex forms. For 
example, for the PH variable, probability densities with two main lobes (bimodal) are noted for 
the “Control” and “Moderate” water stress classes, as according to Table 3 (Shapiro-Wilk test), 
this variable does not have a normal distribution for these classes. Furthermore, the values of 
Fisher’s kurtosis and Skewness statistics are further from zero. 

Another example is the NGL variable. It has a probability distribution different from Gaussian 
for all classes of water stress or control (see Table 3). Analyzing the probability densities 
estimated by KDE, it is observed that for the “Control” class the density has a heavy right tail. 
While for the other classes there is another main lobe around the value 100. And, regardless of 
class, all estimated densities are asymmetric. This fact is also shown in Table 3 by the Fisher’s 
kurtosis and Skewness, whose values are greater than 1.4 for all classes. 

An interesting result can be observed for the NT variable. According to Table 3, it has a normal 
distribution for the “Control” and “Severe” classes only. For the “Moderate” class, the Fisher’s 
kurtosis value is the highest calculated, far exceeding the values for the other variables 
(regardless of the class). Analyzing the estimated densities in Figure 7, for the NT variable, we 
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note that this is explained due to its bimodal distribution. Because there is another lobe around 
the value 50. Therefore, it is a leptokurtic distribution. The values of this second mode (or 
outliers) may be due to some intrinsic characteristic of the “Moderate” water regime, or also 
noise in the data, requiring additional research to conclude. These results (and others that can 
be seen in Figure 7) show the importance of using KDE to estimate probability densities, mainly 
for those variables that do not have a normal distribution, or close to it.  

As mentioned by de De Oliveira et al. (2023a) the machine learning models obtained can be 
used to check soil water conditions just by analyzing the variables measured from plants. Thus, 
with the models detailed in Figure 7, it is possible to estimate whether a given sample was 
obtained from a soil that has suffered severe or moderate water stress, or no water stress (control 
class). This can also be done using just one of the variables, whichever is easier to measure. Of 
course, in this case the forecast may be reduced depending on the pattern analyzed. 

  

Figure 7. Probability densities obtained for each variable and each class, using grouped cross-validation with 5 folds. 

The performance measures accuracy, precision and F1-score have maximum values equal to 
0.88, 0.90 and 0.88, respectively, for fold 1 (see Table 2 and Figure 5). On the other hand, the 
lowest values obtained were 0.66, 0.72, 0.67, respectively, for fold 5. These results show 
significant variation depending on the choice of training and testing data. Therefore, to achieve 
better results, more data would be necessary, as in the used database there are only three 
instances of each cultivar in each water stress or control environment. Another way to try to 
improve performance consists of using other types of machine learning algorithms, comparing 
with the results obtained here. 

Finally, the models obtained here can be used to classify forage samples, for the cultivars studied 
here, to understand which soil water regimes (related to water stress) they come from. And this 
can be done with a precision ranging from 72% to 90%, depending on the used cultivar. As the 
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models obtained are based on probability distribution, it can also be assessed whether the 
cultivar comes from an intermediate stress water regime. 
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