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Abstract: Understanding the impact of seasonal variations on soybean productivity is crucial 
for optimizing agricultural practices. Given the influence of climatic factors such as 
temperature and rainfall on crop phenology, this study aims to analyze the effects of sowing 
and harvesting soybean cultivars in different seasons. This research investigates whether sowing 
soybeans in November and December leads to varying outcomes in terms of productivity and 
morphological characteristics, focusing on identifying the most stable cultivars across different 
climatic conditions. The study employed a comprehensive methodology, including data 
standardization, statistical tests (Levene, Shapiro-Wilk, ANOVA, Wilcoxon), and K-means 
clustering, to analyze 40 soybean cultivars across two seasons. Statistical preprocessing ensured 
data accuracy, while clustering helped identify cultivars with consistent responses to climatic 
changes. All computational analyses were performed using Python in the Google Colab 
environment. The findings revealed no significant difference in productivity between the two 
seasons, despite variations in temperature and rainfall. However, the moisture content of the 
grains (MTG) showed significant differences, influenced by higher rainfall in March and April 
and increased temperatures in December. K-means clustering highlighted SYN2282IPRO as 
the most stable cultivar and 77HO111I2X-GUAPORÉ as the most sensitive to climatic 
changes. The results emphasize the need for careful cultivar selection based on specific 
adaptability to seasonal variations. This study underscores the potential of computational tools 
like K-means clustering in agricultural optimization, offering a data-driven approach to 
selecting stable soybean cultivars. The adaptable methodology can be tailored to different 
geographical regions, soil types, and climate conditions, enhancing its relevance and 
applicability. These insights contribute to a better understanding of the complex interactions 
between climatic variables and soybean phenology, providing a foundation for improving 
agricultural practices in the face of climate change. 
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______________ 

 

1. Introduction 

Soybeans (Glycine max (L.) Merrill), the primary global supplier of vegetable protein, are 
extensively grown in diverse regions, such as the Canadian prairies, the northern Great Plains 
of the United States, and the tropical areas of the Brazilian Cerrados and the Argentine Pampas 
(Grassini et al., 2021). This diverse geographic distribution highlights the remarkable adaptability 
of soybeans to different climatic and soil-climatic conditions, emphasizing their economic and 
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agronomic relevance in various regions of the world. Moreover, this broad adaptability, coupled 
with the nutritional importance of soy, highlights its prominent position in global food security 
and sustainable supply of plant-based proteins (Nóia Júnior & Sentelhas, 2019). Thus, improved 
soybean cultivation is multifaceted and encompasses aspects of food security, nutrition, 
economics, sustainability, and environmental impact. 

A significant increase in global demand for crops is expected, estimated to occur between 60% 
and 110% by 2050, with climate change already impacting yields in several countries (Mourtzinis 
et al., 2019; Nóia Júnior & Sentelhas, 2019). Climatic variables, notably temperature and 
precipitation, have a determining influence on soybean productivity (de Oliveira et al., 2022). 
The influence of climate variables on crop yield is complex, with precipitation being crucial for 
determining the water balance, while temperature affects the development rate, size, and 
number of grains (L Hoffman et al., 2020). Therefore, identifying limiting climatic conditions 
and developing agricultural adaptation strategies are essential for mitigating food security 
concerns. Moreover, the development of agricultural agronomy aimed at adapting to climate 
change is highly important, especially when focusing on legumes, which are intrinsically 
susceptible to fluctuations in yield stability (Staniak et al., 2023). To this end, an in-depth 
understanding of these meteorological factors and their correlation with the physiological 
responses of plants is crucial for optimizing the productive efficiency of these important crops, 
thus contributing to sustainability and food security despite ongoing climate change (Gawęda et 
al., 2020). Overall, understanding these interactions is vital for developing integrated approaches 
in agricultural research, ensuring the resilience of agricultural production systems in the face of 
imminent climate change (L Hoffman et al., 2020; Mourtzinis et al., 2019). 

In crops, sowing outside the optimal period can cause major losses. In the corn belt region in 
the United States alone, losses of approximately US$340 million per year are estimated due to 
planting outside the recommended period, and climate change exacerbates this situation due to 
greater climate unpredictability, which affects decision making (Luiz Piati et al., 2023). The 
sowing date plays a crucial role in the interaction with the response of soybean seed yield to the 
seeding rate, considering the findings of previous studies carried out from October 5th to 
December 15th in Brazil (Corassa et al., 2018). Three weeks of delay in planting soybeans is 
enough to change yields, according to research conducted in Japan, due to temperature changes 
(Kumagai & Takahashi, 2020). In another study in the United States, the authors found that the 
date of soybean sowing affected the oil concentration and seed yield regardless of latitude 
(Assefa et al., 2019). In a study carried out in Argentina, the authors concluded that among the 
management variables, sowing date and soybean genotype selection are the most important and 

help to explain approximately 40% of the total productivity variability (Vitantonio‐Mazzini et 
al., 2021). In a study that analyzed the biometric and phenological characteristics of four 
contrasting soybean cultivars, the authors found that there was a reduction in growth in all 
cultivars with delayed sowing (Clovis et al., 2015). 

Acknowledging the significance of sowing and harvesting seasons, coupled with climatic 
variations attributed to climate change and phenomena such as El Niño and La Niña, which 
impact the rainy season, this research aimed to examine the impact of sowing in distinct 
subsequent months (November and December) on 40 soybean cultivars. These months were 
chosen due to the observed variations in temperature and rainfall. Morphological and 
productivity data were analyzed using an unsupervised machine learning approach. Thus, the 
main objective of this study was to evaluate the temporal variability in soybean sowing and 
harvesting using K-means clustering and silhouette scores. The secondary objective was to 
verify which of the forty cultivars analyzed were more stable (whose variables responded in a 
more similar way) when sown/harvested in different months. 

The K-Means machine learning method, which is based on cluster analysis, represents an 
extremely important tool for identifying and characterizing patterns in data and plays a crucial 
role in the context of agriculture (de Oliveira et al., 2021; Li & Niu, 2020; Rahamathunnisa et 
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al., 2020; Shedthi et al., 2017). The intrinsic ability of K-means to partition datasets into distinct 
clusters, based on similarities between observations, enables the discernment of latent patterns 
and the efficient categorization of agronomic information. By applying the K-means algorithm 
to agricultural datasets, it is possible to identify homogeneous groups of variables, such as soil 
characteristics, climate conditions and agricultural practices, providing an in-depth 
understanding of the interactive relationships between these factors (Bekkanti et al., 2020; 
Sharma et al., 2023; Yadav et al., 2020). This analytical approach offers valuable input for 
agricultural decision-making, promoting more effective and sustainable management, 
optimizing the use of resources and maximizing crop yields (de Oliveira et al., 2021; Li & Niu, 
2020; Rahamathunnisa et al., 2020). Therefore, the K-Means method proves to be an essential 
tool in the analysis of agricultural data, contributing significantly to the promotion of efficiency 
and productivity in the agricultural sector. 

 

2. Material and Methods 

2.1 Experimental area, design and treatments 

The experiment was conducted in the field at the “Pequizeiro” farm, located at the Experimental 
Station of “Accert Pesquisa e Consultoria Agronomica” near Balsas, MA, Brazil, during the 
2022/2023 harvest to investigate soybean cultivar performance under the region's hot and 
humid tropical (Aw) climate according to Köppen’s classification. The study area, characterized 
by a latitude of 07°31’57” S, longitude of 46°02’08” W, and an altitude of approximately 283 m, 
experiences rainy summers and dry winters, with an average annual rainfall of 1175 mm. The 
soil, classified as a Yellow Oxisol with a sandy texture, was sampled and analyzed before the 
experiment, revealing its chemical and physical properties. Figure 1 shows precipitation and 
temperature data between November and April for the years in which the experiment was 
carried out (2022 to 2023) and historical data between 1991 and 2020. Table 1 shows the 
physicochemical characteristics of the soil in the experimental area where the 40 cultivars were 
sown. 

 

Figure 1. Average precipitation and temperature data for the years 2022 and 2023 and the historical data for 1991 to 2020 for the city of 
Balsas-MA. Source: Accert (2023) and the National Institute of Meteorology (2023). 
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Table 1. Main chemical properties of the soils used in the experiment. 

Depth pH OM PMehlich-1 H+Al Al3+ Ca2+ Mg2+ K+ CEC B 

cm H2O dag kg-1 mg dm–3 --------------------- cmolc dm–3 ----------------------- % 

0-20 6.00 1.29 54.95 1.20 0.01 2.15 0.71 136.00 4.41 72.78 

20-40 4.65 0.23 20.72 1.80 0.54 0.95 0.30 70.00 3.23 44.26 

 B Cu Fe Mn Zn S TOC Clay Silt Sand 

 ------------------------mg dm–3------------------------ dag kg-1 ------------%------------ 

0-20 0.22 0.44 113.21 14.28 0.73 6.30 0.75 24.24 9.26 66.49 

20-40 0.23 0.40 81.98 4.25 0.37 12.60 0.13    

OM: organic matter. CEC: cation exchange capacity at pH 7.0. B: base saturation. TOC: total organic carbon. 

The experimental design followed a randomized block arrangement in a split-plot scheme with 
four replications. The plot treatments involved two sowing times (season 1: 10/11/2023, season 
2: 04/12/2023), while the subplots included 40 soybean cultivars: FTR 3190 IPRO, FTR 4288 
IPRO, NK 8770 IPRO, M 8606I2X, M 8644 IPRO, ADAPTA LTT 8402 IPRO, 98R30 CE, 
FORTALEZA IPRO, MONSOY 8330I2X, SUZY IPRO, TMG 22X83I2X, EXPANDE LTT 
8301 IPRO, FORTALECE L090183 RR, 83IX84RSF I2X, 82HO111 IPRO - HO COXIM 
IPRO, 82I78RSF IPRO, SYN2282IPRO, ATAQUE I2X, NK 8100 IPRO, FTR 4280 IPRO, 
LYNDA IPRO, BRASMAX OLÍMPO IPRO, LAT 1330BT.11, FTR 3179 IPRO, 97Y97 
IPRO, BRASMAX BÔNUS IPRO, PAULA IPRO, NEO 790 IPRO, LTT 7901 IPRO, 
GNS7900IPRO – AMPLA, 79I81RSF IPRO, ELISA IPRO, NK 7777 IPRO, 77HO111I2X – 
GUAPORÉ, GNS7700IPRO, FTR 3868 IPRO, MANU IPRO, NEO 760 CE, 74K75RSF CE, 
96R29 IPRO. Each experimental unit consisted of eight rows spaced 0.50 m apart and 10 m 
long and covered an area of 40 m², with the central 16 m² considered the useful area. Desiccation 
was carried out using glyphosate + Haloxyfope-P-methyl, and subsequent soybean sowing was 
performed via a nil-tillage system. The fertilization agents included monoammonium phosphate 
(MAP) and potassium chloride. The soybean seeds were treated, and throughout plant 
development, various products were used for weed, pest, and disease management. 

At the R8 harvest stage, variables such as plant height (PH), insertion of the first pod (IFP), 
number of stems (NS), number of legumes per plant (NLP), number of grains per plant (NG), 
number of grains per pod (NGP), mass of a thousand grains (MTG), and grain yield (GY) were 
measured from 10 plants per plot. The data, organized into a tabular format with columns 
representing different variables and conditions, comprised a total of 320 samples, considering 4 
replications for each of the 40 cultivars across two harvest seasons. Details about the experiment 
and the data collected were previously described (de Oliveira et al., 2023). 

 

2.2 K-Means and Silhouette Scores 

Machine learning algorithms for performing clustering employ unsupervised learning. In this 
type of learning, the classes (groups) to which the samples belong are not known. These 
algorithms group data points that are similar to each other in the same cluster in such a way that 
the remaining samples grouped in other clusters are less similar (James et al., 2013). A frequently 
used dissimilarity metric is the Euclidean distance (Theodoridis & Koutroumbas, 2006). The 
smaller the distance between two vectors (data sample) is, the more similar they are (de Oliveira 
et al., 2022). 

The K-Means algorithm clusters data by attempting to separate samples in 𝐾 groups of equal 
variances, minimizing a criterion known as within-cluster sum-of-squares (WCSS). This 
algorithm requires the number of clusters to be specified (Ahmed et al., 2020). It scales well to 
large numbers of samples and has been used across a large range of application areas in many 

different fields (Ikotun et al., 2023). This algorithm divides a set of 𝑁 samples 𝑋 into 𝐾 disjoint 

clusters, each described by the mean 𝑈𝑗 of the samples in the cluster (Oti et al., 2021). The 
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means are commonly called the cluster “centroids”; note that they are not, in general, points 

from 𝑋, although they live in the same space. K-Means has three main steps. In the first step, 
the initial centroids are chosen randomly or via an adequate scheme (Buitinck et al., 2013). After 
initialization, each sample is associated with the nearest centroid using a distance metric such as 
the Euclidean distance. Finally, the algorithm creates new centroids by taking the mean value of 
all of the samples assigned to each previous centroid. The difference between the old and the 
new centroids is computed, and the algorithm repeats these last two steps until this value is less 
than a certain threshold. In other words, the process repeats until the centroids do not move 
significantly (Ikotun et al., 2023). 

However, while K-Means has been applied to a diverse array of real-world problems (Ahmed 
et al., 2020), it has advantages and disadvantages (Buitinck et al., 2013; Oti et al., 2021). On the 
positive side, it is relatively straightforward to implement, scale effectively to large datasets, 
ensure convergence, and readily adapt to new examples. Conversely, its drawbacks include the 
impact of the choice of K on clustering results, challenges in handling data of varying sizes and 
density, displacement of centroids by outliers hindering correct grouping, and susceptibility to 
issues in high-dimensional data. To address some of these limitations, normalization and 
standardization have proven useful as preprocessing techniques before applying K-means. 
Normalization involves scaling data to a specific range, while standardization transforms data 
to have a mean of zero and a standard deviation of one (Abdulhafedh, 2021; James et al., 2013). 

Choosing the value of K is a critical stage in the application of K-means. Several approaches 
can be used in this decision (Umargono et al., 2020); however, one of the most effective 
approaches is the silhouette score (Naghizadeh & Metaxas, 2020). This approach serves as a 
crucial evaluation metric, offering a quantitative measure to assess the quality and 
appropriateness of clustering results. It evaluates the well-defined nature and distinctiveness of 
clusters by quantifying how effectively data points fit into their assigned clusters and how 
distinct they are from other clusters. The score ranges from -1 to +1, with negative values 
indicating potential misassignments, values close to 0 suggesting ambiguous clustering, and 
positive values reflecting well-clustered and distinct data points (Tambunan et al., 2020). 

 

2.3 Proposed methodology 

First, standardization preprocessing was applied to the data. This technique centralizes the 
samples for each variable by subtracting the mean and dividing by the standard deviation. 

Afterwards, statistical tests (Levene and Shapiro‒Wilk) and analyses (ANOVA and Wilcoxon 
ranks) were carried out to verify whether the samples came from different or equal distributions 
with the same average. This process is performed for each variable individually. For variables 
that do not pass statistical tests, the Yeo–Johnson transformation is applied so that the 
distribution is approximated to a normal distribution. From the p values provided by Wilcoxon 
ranks, the variables that will be used in K-means are chosen. The choice of the number of 
clusters is carried out empirically by testing the values that return the highest silhouette score. 
After setting this quantity, K-means was ultimately applied to the data for each season 
individually to determine how the cultivars were grouped in the same group in different seasons. 
The entire computational implementation is carried out in Python in the Google Colab 
environment and is accessible to the public. 

 

3. Results 

Summary information calculated from the original data (before any transformation) is recorded 
in Table 2. Measurements were calculated for each season separately. Although the original 
values are not used in the proposed machine learning methodology, visualization of some 
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measurements of these data is necessary. The transformations employed eliminate the 
dimensions of the variables, complicating the discussion concerning these transformed values. 

 

Table 2. Summary measures for each variable calculated from the raw data. 

Measures 
PH 

(cm) 
IFP 
(cm) 

NLP 
(unit) 

NG 
(unit) 

NGP 
(unit) 

NS 
(unit) 

MTG 
(g) 

GY 
(kg/ha-1) 

Season 1 

Average 65.9850 16.4850 57.9650 135.2350 2.2995 4.8166 162.2884 3428.4524 
Std. 8.3128 2.3366 19.3414 48.7502 0.3704 1.3962 18.4309 639.0364 

Minimum 50.4000 10.8000 20.2000 47.8000 0.9388 2.2000 127.0572 1538.2298 
Maximum 91.0000 26.4000 116.4000 272.4000 4.7533 9.0000 215.9964 4930.0000 

 Season 2 

Average 70.7883 14.4450 60.2116 134.9366 2.2817 3.3266 174.3557 3408.6551 
Std. 8.9604 3.2856 20.7694 70.4670 1.1304 1.1379 18.9684 314.7245 

Minimum 47.6000 7.2000 24.8000 48.0000 1.1494 0.4000 127.7627 2625.9137 
Maximum 94.8000 24.2000 123.0000 683.4000 14.8565 9.0000 213.2448 4164.0574 

Std.: standard deviation; cm: centimeter; g: gram; kg/ha: kilogram per hectare. 

 

The statistics and p values of the Levene and Shapiro‒Wilk tests were calculated for each 
variable (Table 3). In the “Variance?” and “Normal?” columns, the final results are presented, 
considering a confidence level of 5%. The results shown in Table 4 were obtained from analysis 
of variance (ANOVA) and included three sources of variation, i.e., season (SE), cultivar (CL), 
and season versus cultivar (SE × CL), as well as the coefficient of variation (CV) for each 
variable. 

 

Table 3. Results of the Levene and Shapiro‒Wilk tests for each variable after undergoing the Yeo–Johnson transformation. 

Variable 
Levene’s Test Shapiro‒Wilk test 

Statistic p value Variance? Statistic p value Normal? 

PH 1.8990 0.1691 Equal 0.9904 0.0347 Yes 
IFP 22.2157 0.0000 Not Equal 0.9830 0.0008 No 
NLP 0.1851 0.6672 Equal 0.9904 0.0360 No 
NG 0.2232 0.6369 Equal 0.8005 0.0806 Yes 

NGP 9.2179 0.0025 Not Equal 0.8971 0.0000 No 
NS 0.6210 0.4312 Equal 0.9951 0.4199 Yes 

MTG 0.0317 0.8587 Equal 0.9879 0.0091 No 
GY 58.1039 0.0000 Not Equal 0.9868 0.0052 No 

 

Table 4. Results of the analysis of variance showing the p values for each variable in each source of variation after undergoing the Yeo–
Johnson transformation. 

Source of variation 
Probability > F 

PH 
(cm) 

IFP 
(cm) 

NLP 
(unit) 

NG 
(unit) 

NGP 
(unit) 

NS (unit) 
MTG 

(g) 
GY 

(kg/ha-1) 

SE 0.0014 0.0005 0.0737 0.8088 0.0517 0.0000 0.0002 0.4970 
CL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SE x CL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

CV (%) 13.0787 19.5247 33.9099 44.7123 36.610 36.1557 11.6414 14.6909 

SE: season; CL: cultivar; CV: coefficient of variation. 

 

To investigate which cultivars underwent fewer changes at different sowing and harvest seasons, 
we initially checked which of the variables collected were associated with different statistical 
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distributions. Since the variables did not pass the assumptions of the Levene and Shapiro‒Wilk 
tests, even after undergoing the Yeo–Johnson transformation, we opted for the Wilcoxon test 
for independent samples. This nonparametric method was chosen due to its independence from 
fixed characteristics of the data distributions. Our results are presented as the statistics of these 
tests as well as the p values (Table 5). These results are used to select the variables that will be 
used in K-means. 

 

Table 5. Wilcoxon rank results showing the p values for each variable. 

 
PH 

(cm) 
IFP 
(cm) 

NLP 
(unit) 

NG 
(unit) 

NGP 
(unit) 

NS (unit) 
MTG 

(g) 
GY 

(kg/ha-1) 
Statistic -4.6457 5.8819 -0.7516 1.0193 3.0995 9.1380 -5.6227 -0.0622 
p value 0.0000 0.0000 0.4522 0.3080 0.0019 0.0000 0.0000 0.9503 

 

Boxplots of each standardized variable and of the outliers for both the sowing and harvesting 
seasons were generated (Figure 2). It should be noted that the graphs were not produced with 
the original values of the variables due to the different scales (units of measurement) used for 
each of the variables. Therefore, the values themselves do not matter but only the distribution 
of the data in the different seasons. 

  

Figure 2. Boxplot of each standardized variable for the different seasons: (a) season 1 and (b) season 2. PH: plant height, IFP: insertion of 
the first pod, NS: number of stems, NLP: number of legumes per plant, NG: number of grains per plant, NGP: number of grains per pod, 
MTG: mass of a thousand grains, and GY: grain yield. 

 

The results of choosing the values for the number of centroids in K-means using the elbow 
method and the silhouette score are shown in Figures 3 and 4. These analyses were conducted 
independently for each individual season. This step involves tuning the hyperparameter of the 
machine learning model and must be performed empirically on the entire dataset. Figure 3 
shows the silhouette scores for different choices of k, highlighting (dashed black line) the value 
of k for the highest score. Figure 4 shows how the samples are grouped into different groups 
as well as their silhouette score values according to fixed k values (Figure 3). In addition, the 
average silhouette score (dashed red line) is also displayed. Samples with negative scores are 
those with a greater possibility of having been grouped incorrectly. 

 



Temporal variability in soybean sowing and harvesting according 
to K-means and silhouette scores 

Oliveira et al. 

 

https://editorapantanal.com.br/journal Trends in Agricultural and Environmental Sciences 

e240010 - 8 of 15 

 

 

Figure 3. Silhouette score for six chosen from the number of centroids: (a) for season 1 (b) for season 2. 

 

 

Figure 4. Silhouette plot for 160 samples in the (a) tree cluster and (b) two other clusters. The colors designate the groupings. 

 

Since the number of clusters selected by the elbow method differs for each season, numbers of 
clusters equal to 2 and 3 were considered. For each choice of cluster number, the number of 
samples grouped into different groups was computed, considering the groups formed in the 
first and second seasons separately. Figure 5 shows the results where the colored numbers 
indicate the number of replications of each cultivar that were grouped into different groups. For 
example, 3 repetitions of the cultivar 74K75RSF CE were grouped into distinct groups using 
two clusters in K-Means when comparing the clusters carried out in the first and second seasons. 
In other words, in the first season (November), these three repetitions were grouped into group 
0, and in the second season (December), they were grouped into group 1. However, when 3 
clusters were used, only one repetition was grouped together. 
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Figure 5. The number of repetitions (samples) grouped into different groups for each cultivar when the number of clusters was 2 or 3 is 
shown. The colors are used only to differentiate the quantities. 

 

4. Discussion 

The main objective of this research was to verify whether sowing and harvesting soybeans in 
consecutive seasons (November and December) yield varying outcomes. This investigation is 
valid because the chosen months present different rainfall and temperature characteristics in the 
growing region. Furthermore, the seeding rate should be adjusted at each sowing date to increase 
soybean productivity (Umburanas et al., 2019). The phenology of crops is influenced by both 
climatic factors and agronomic management practices, including sowing date and cultivar 
characteristics (Gawęda et al., 2020; He et al., 2020). December showed an increase in 
temperature relative to the average temperature of the historical series recorded since 1991 
(Figure 1). Furthermore, this temperature is also higher than that recorded in the previous 
month. Additionally, the rainfall in March, when part of the 1st and 2nd harvests were carried 
out, was significantly greater than that in the historical series. 
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The secondary objective of this research was to determine which of the 40 cultivars analyzed 
exhibited the greatest variation in the measured variables. Understanding how cultivars react 
and respond to factors is of great cognitive and practical importance, as there are numerous 
studies and programs on the selection of genotypes with greater tolerance to abiotic stresses 
(Soares et al., 2015; Staniak et al., 2023; Zuffo et al., 2018). 

Our statistical test results showed that not all the collected variables passed the normality and 
homogeneity of variance tests, even after applying the standardization and Yeo–Johnson 
transformations (Table 3). Because the analyzed data sample includes more than 30 examples, 
the normal distribution requirement can be relaxed for the ANOVA test because of the central 
limit theorem. However, the variance is not homogeneous for three of the variables, namely, 
IFP, NGP, and GY. Therefore, ANOVA may lead to a Type I error, where a true null 
hypothesis is mistakenly rejected. In other words, the observed significant differences between 
means could be ascribed to variations in variances rather than to differences in population 
means (Roberts & Russo, 2014). Keeping this in mind, the p values indicate that for the variables 
PH, IFP, NS, and MTG, there was a significant difference between the seasons (Table 4). In 
relation to cultivar (CL) and the interaction (SE × CL), there were significant differences in all 
the variables. On the other hand, Wilcoxon rank analysis (Table 5), which does not require 
specific assumptions about the data distribution, revealed that there was a significant difference 
in the variables PH, IFP, NGP, NS and MTG. This second analysis included only one variable 
in relation to the ANOVA, i.e., NGP. The variables that were significantly different between 
the seasons were not related to productivity, except for the NGP and MTG variables. The 
reasons for these exceptions are explained below. 

The main variable related to productivity, e.g., GY, had a very similar average in both seasons 
(Table 1). However, the larger standard deviation in season 1 indicates greater variability in this 
period. This was also observed when comparing the minimum and maximum values in the two 
seasons. On the other hand, the results from other research suggest that late sowing reduces 
productivity because of reductions in aerial biomass per area, leaf area index, final plant height, 
pod height, pods per area, seeds per area, and seed mass (Umburanas et al., 2019). However, 
this research was conducted under different soil and climatic conditions, and only one cultivar 
was analyzed. Observations of the MTG variable revealed that, in the second season, its average 
was greater than that in the second season, contrary to the results of the abovementioned 
research (Umburanas et al., 2019). In addition, the variables IFP, NG, NGP, NS, and GY 
exhibited average decreases in the late season, which partially corroborates the previous results. 
Therefore, the results obtained here can be partially explained by the overlap in the harvest in 
March 2023 (Figure 1), when there was a partial harvest from both the November and 
December sowing seasons. During this period, there was a smaller change in temperature and 
rainfall in July than in April. 

Although the NGP variable was selected using Wilcoxon rank analysis, it had outliers because 
the standardized values were much greater than those of the other variables for the second 
season (Figure 2). Therefore, concluding that the average is significantly different between 
seasons may be misleading. Therefore, additional investigations are necessary to verify the 
source of these outliers. Because K-Means is sensitive to outliers, only the variables PH, IFP, 
NS and MTG were used to learn the centroids that separate the groups in each season. 

Based on the statistical results, there is no evidence to conclude that one season is better than 
another in relation to productivity. In contrast, the tests indicated that there was no difference 
in productivity, which can be explained in part by the overlap in the harvest period (the means 
and medians are shown in Table 1 and Figure 2). The MTG variable, selected by both statistical 
analyses, is related to productivity. However, the high moisture content of the grains during the 
second sowing at the time of harvest (Figure 1, coinciding with increased precipitation in April) 
led to a variation in the mean moisture content between the seasons. The other variables 
associated with productivity are shown as medians in Figure 2. This explains why only this 
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variable related to productivity was selected. Because the mean MTG differed between seasons 
1 and 2 but with an approximate standard deviation, this variable was maintained for the 
application of K-means. Therefore, for the morphological variables and the MTG variable, there 
was a significant difference between the seasons (Table 5). In other research, the authors 
observed that the mass of a thousand grains increases linearly as the moisture content increases 
(Tavakoli et al., 2009). Additionally, as the analysis of variance showed, there was a statistically 
significant difference between the soybean cultivars. Therefore, it is necessary to investigate 
which cultivars have different results because of variations in temperature and precipitation in 
different seasons. 

The elbow method is applied to fix the number of centroids returning different values for the 
sowing season, with k equal to 2 for November (Figure 3 (a)) and k equal to 3 for December 
(Figure 3 (b)). The use of k equal to 2 (Figure 4 (a)) results in fewer samples with a negative 
silhouette score, according to the graphs in Figure 4. There are more samples with a score higher 
than the average silhouette score for this value of k. However, none of the k values resulted in 
a very high score, and in both cases, it was less than 0.3. This indicates that the patterns observed 
in the variables, that is, how cultivars respond to variations in precipitation and temperature in 
different seasons, are not as distinct. Therefore, the data samples have values closer to the 
centroids of the group to which they were associated, but they are also not very far from the 
centroids of the other groups. 

Although the cultivars’ responses are generally similar in relation to the distance from the 
centroids, some are more stable in terms of grouping. In other words, they are grouped into the 
same groups regardless of the sowing season. When 2 clusters were used, nine cultivars had four 
repetitions grouped in the same groups (Figure 5). These are indicated by 0 values in the column. 
For the three clusters, nine other cultivars also showed the same result. The best cultivar for 
both cluster choices was SYN2282IPRO. For this cultivar, only one of the repetitions was 
grouped into a different group when comparing the groupings of the two seasons. On the other 
hand, the cultivar with the greatest sensitivity to changes in temperature and precipitation in 
different seasons was 77HO111I2X-GUAPORÉ. These results are expected, as soybean 
genotypes respond differently to different environmental variations and to sowing date (Clovis 
et al., 2015). 

The use of K-means for some cultivars was more sensitive to the number of clusters. Depending 
on the choice of k, the repetitions were grouped into completely different groups (number 4 in 
the column of Figure 5) or into the same groups (number 0 in the column of Figure 5). The 
cultivars that fit these results are 82HO111 IPRO-HOCOXIM IPRO, 82I78RSF IPRO, FTR 
3868 IPRO, FTR 4280 IPRO, FTR 4288 IPRO, GNS7700 IPRO, GNS7900 IPRO-AMPLA, 
M8644 IPRO, MONSOY 8330I2X, MONSOY M8606I2X, NK 8100 IPRO, and PAULA 
IPRO. 

The results presented here show that the proposed methodology provides a scheme for farmers 
to select the most stable cultivars depending on the season. For planting in November, 3 clusters 
were chosen (Figure 4a), for which the values in Figure 5, column 2, were equal to 0. These 
cultivars generated similar results. On the other hand, for sowing in December, the choice of 2 
clusters was more appropriate (Figure 4b). Therefore, cultivars with values equal to 0 in the first 
column of Figure 5 must be selected. The selection process is different because the cultivars 
responded differently to variations in temperature and precipitation during these seasons. In 
such scenarios, the use of computational tools is necessary. Such communication and 
information technology tools are extremely important for agriculture because they contribute 
to long-term sustainability (Lindblom et al., 2017). 

It is crucial to emphasize that the presented methodology must be customized according to the 
specific cultivar, soil, and climate characteristics. Consequently, for crops in different 
geographical regions, the selection of cultivars may deviate from that outlined in this study. In 
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essence, the machine learning model derived herein should not be universally applied to all 
scenarios. This particular characteristic of the model is not a constraint; rather, it underscores 
the adaptability of the methodology. This adaptability extends beyond the variables employed 
in this study, allowing the model to analyze additional factors. Furthermore, the methodology 
is not restricted to assessing the stability of soybean crops exclusively; it can also be extended 
to evaluate the stability of other crops. This versatility is conceivable because the methods 
employed in the methodology do not consider intrinsic information pertaining to crops, soil, or 
climate. Instead, they rely solely on the collected data, irrespective of the measured variables. 

5. Conclusion 

A comparative analysis of soybean cultivar performance across consecutive planting seasons 
was conducted utilizing a machine learning framework. Forty soybean cultivars were sown in 
November and December, with subsequent data collection and analysis. The primary objective 
was to quantify the influence of seasonal temperature and precipitation variability on soybean 
morphology and yield. 

Statistical analysis revealed no significant differences in grain yield (GY) between the two 
planting periods. Conversely, grain moisture content (MTG) exhibited substantial inter-seasonal 
variation. Increased precipitation during March and April, coupled with elevated December 
temperatures, was correlated with these MTG discrepancies. 

Employing K-means clustering, cultivars were categorized based on their phenotypic stability 
across seasons. SYN2282IPRO demonstrated consistent performance, with minimal clustering 
variation. In contrast, 77HO111I2X-GUAPORÉ exhibited pronounced sensitivity to climatic 
fluctuations. These findings underscore the importance of cultivar selection aligned with specific 
environmental conditions. 

While morphological traits displayed seasonal variation, yield metrics remained relatively 
constant. However, the observed MTG discrepancies necessitate refined post-harvest 
management strategies. The study highlights the utility of machine learning, specifically K-
means clustering, in cultivar selection for optimal agronomic performance. This methodology 
is adaptable to diverse agro-ecological contexts. 

This research provides foundational insights into the soybean-climate interaction. Nevertheless, 
the model's generalizability is contingent upon local environmental factors. Subsequent 
investigations should focus on model refinement for various crops and regions. The findings 
contribute to the broader understanding of soybean phenology under changing climatic 
conditions and inform data-driven agricultural decision-making. 
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