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Abstract: Common beans and cowpea are two grains that form part of the preferred diet in 
several countries, mainly due to their nutritional value. Knowledge of their diversity is 
important for plant breeding and determines the conservation and use strategy. Previous 
analyzes show that there is variability for a set of qualitative and quantitative descriptors for 
this species. The objective of these work was to use data from qualitative descriptors to generate 
a decision tree model that makes it possible to classify common bean and cowpea genotypes. 
17 bean genotypes were used, 12 of which were common beans and 5 were cowpeas. Eight 
qualitative descriptors were used to characterize the bean genotypes. Machine learning 
techniques were used to generate decision tree models for classifying bean genotypes. Using 
the accuracy, precision and F1-score metrics in the cross-validation approach, we select the 
best decision tree model. This model was adapted into a flowchart for use in various purposes, 
aiming to classify beans based on qualitative descriptors. 

Keywords: Phaseolus vulgaris L., Vigna unguiculata L. Walp., selection, Machine learning. 

______________ 

1. Introduction 

Common beans (Phaseolus vulgaris L.) and cowpeas (Vigna unguiculata L. Walp.) hold significant 
importance in the human diet across various countries worldwide, primarily due to their high 
nutritional value and protein content (Abebe & Alemayehu, 2022; Catarino et al., 2021; Singh, 
2015). Both types of beans are rich in essential amino acids, dietary fiber, B vitamins and 
minerals such as iron, zinc and magnesium. Furthermore, they contain phytochemical 
compounds with antioxidant and anti-inflammatory properties. These foods play a significant 
role in promoting health and preventing disease when integrated into a balanced and varied diet 
(Didinger et al., 2022; Enyiukwu et al., 2020). 

Understanding the diversity within any crop starts with the conservation and selection of 
genotypes. This initial step is crucial for identifying genetic resources, essential for maintaining 
germplasm banks and ensuring food security for future generations (Elsayed et al., 2023; Özkan 
et al., 2022; Sampaio et al., 2023; Wu et al., 2021). Studies on beans have elucidated the genetic 
dissimilarities within the crop (Cabral et al., 2011; Catarino et al., 2021; Coelho et al., 2007; 
Guimarães et al., 2023; Tavares et al., 2018). These investigations reveal variability in 
morphological characteristics and growth development. Genetic improvement and breeding 
programs are of paramount importance for crops like cowpea and common bean. In the case 
of cowpea, due to its adaptability to water stress and its nitrogen-fixing capacity (de Sousa Leite 
et al., 2023), as well as its wide geographical distribution, its genetic diversity, both in cultivated 
varieties and wild relatives, represents a valuable resource for breeding programs (Maia, 2023). 
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However, despite advances in breeding programs, the genetic base of cowpea remains narrow, 
necessitating the exploration of alien germplasm to broaden this base (Boukar et al., 2020; 
Catarino et al., 2021). Additionally, research on the development of transgenic cowpea varieties 
resistant to pests, such as the pod borer (Maruca vitrata), highlights a promising area for 
improving pest resistance and increasing productivity (Catarino et al., 2021). In the case of 
common bean, disease resistance is crucial to ensure production stability. Breeding strategies, 
including phenotypic selection and marker-assisted selection, have been employed to develop 
varieties resistant to a variety of pathogens, such as viruses, fungi, and bacteria, with marker-
assisted selection offering advantages in terms of efficiency and accuracy in identifying 
resistance genes (Catarino et al., 2021; Watare, 2023). Considering the challenges faced by 
agriculture, such as climate change and increased pressure from diseases and pests, genetic 
improvement programs play a vital role in ensuring food security and agricultural sustainability. 

In a recent study (Aguilera et al., 2023), the authors researched the genetic diversity of bean 
genotypes using qualitative and quantitative descriptors for characterization. The research, 
carried out with 17 bean cultivars, revealed significant differences between the genotypes in 
terms of weight, size and qualitative characteristics of the seeds. Principal component analysis 
(PCA) identified five divergent groups, highlighting the genetic variability present in bean 
germplasm. The general results emphasized the importance of germplasm characterization for 
the selection and conservation of genetic resources, fundamental for future food security. The 
diversity observed in the genotypes suggests a significant potential for genetic improvement 
programs, allowing the identification of superior parents and the achievement of genetic gains. 
The combination of qualitative and quantitative descriptors proved to be an effective strategy 
in the discrimination and selection of bean genotypes. This strategy has also been tested in works 
involving Solanum lycopersicon cultivation (Aguilera et al., 2019), Capsicum spp. (Sampaio et al., 
2023), Manihot esculenta (Vilela Barros et al., 2020). 

Machine learning has proven crucial in agricultural applications due to its ability to process large 
volumes of data and extract meaningful insights to improve agricultural productivity and 
efficiency (Liakos et al., 2018). Within this context, decision tree models play a fundamental role 
in knowledge discovery (Sivagama Sundhari, 2011), offering an interpretable and effective 
approach to agricultural data analysis. These models are capable of identifying complex patterns 
in data, allowing farmers to make informed decisions about cultivation, pest management, 
resource optimization and crop forecasting (de Oliveira et al., 2023; Marin et al., 2021). By 
integrating machine learning and decision tree models into agricultural practices, it is possible 
to boost sustainability and food security (Tariq et al., 2023), contributing to an agricultural sector 
that is more resilient and adaptable to environmental and climate change (Yeganeh-Bakhtiary et 
al., 2022). 

Given the importance of beans in food and the need for constant genetic improvement for 
genotypes more adapted to severe conditions, mainly due to climate change, and also the 
relevance that machine learning has shown for the discovery of knowledge in agriculture, in this 
work we propose the use of decision tree algorithms to obtain a classification model for 
Common beans and cowpeas species. 

2. Material and Methods 

2.1 Experimental design 

The experiment was conducted at the State University of Mato Grosso do Sul (UEMS) in 
Cassilândia, MS, Brazil. A total of 17 bean genotypes, 12 common bean genotypes, and 5 cowpea 
genotypes were purchased from the local seed market in the municipality of Cassilândia, MS, 
Brazil. The seeds of cowpea genotypes are part of the UEMS/Cassilândia seed bank. The 
detailed description of the 17 bean genotypes used in this study is shown in the work described 
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by Aguilera et al. (2023). Data were evaluated in a completely randomized design, with three 
repetitions of 25 seeds each. 

2.2 Qualitative descriptors 

To evaluate the genetic divergence among the 17 genotypes, seeds with a moisture content 
ranging from 12% to 14% were utilized (Ministry of Agriculture, 2009). The assessment 
involved three repetitions of 25 seeds each to ascertain seed width (SW, in mm), seed length 
(SL, in mm), and seed thickness (ST, in mm), used to calculate some of the qualitative 
descriptors. 

Embrapa’s recommendation (Silva, 2005) was employed to evaluate genetic divergence using 
qualitative descriptors for characterizing common bean cultivars/varieties (Phaseolus vulgaris L.). 
The assessment involved examining qualitative characteristics using a sample of 10 seeds. 

• Seed color: The assessment involved evaluating the uniformity of seed color, with scores 
of 1 to “Uniform” or 2 to “Non-Uniform”; 

• Primary and Secondary color given in % by evaluating the percentage of color 
occurrence in the seed; 

• Seed shape: the calculation is founded on the J coefficient (mm) = SL/SW, resulting in 
the following shapes: Spherical (1.16 to 1.42) and Elliptical (1.43 to 1.65), Oblong/Short 
Reniform (1.66 to 1.85), Oblong/Medium Reniform (1.86 to 2.00) and Oblong/Long 
Reniform (> 2.00) (Romero, 1961); 

• Degree of seed flattening: calculation from the coefficient H (mm) = ST/SW, where: 
Flattened (< 0.69), Semi filled (0.70 to 0.79), and Filled (>0.8) (Romero, 1961); 

• Seed brightness: involved considering the color shade of the seeds: Opaque, 
Intermediate, and Bright; 

• Seed halo: by observing the presence of the seed halo and assigning the values: “Absent” 
or “Present”; 

• Color of the seed halo: evaluation involved considering the color of the seed halo and 
assigning “Same” color of the seed or “Different” color of the seed. 

 

2.2 Machine learning and Decision Tree 

Machine Learning (ML) is a fundamental area of computer science that allows systems to learn 
patterns and make predictions from data without being explicitly programmed. ML has 
applications in all areas of knowledge, including agronomy. An essential technique within ML 
is Pattern Classification, which involves assigning labels to data based on known characteristics 
(de Oliveira et al., 2021). To this end, in the training stage, examples are provided to the 
algorithm so that it learns the patterns and in the testing stage, the learned models are tested 
using performance metrics (Haykin, 2009).  

Cross-validation is a crucial technique for evaluating the performance of an ML model. It 
involves dividing the dataset into training and testing subsets repeatedly in order to check the 
stability and generalization of the model (Kubat, 2021). Cross-validation helps mitigate bias 
from arbitrary selection of datasets and provides a more reliable estimate of model performance. 
To evaluate the effectiveness of an ML model, several performance metrics are used. Accuracy 
measures the proportion of correct predictions in relation to the total number of predictions. 
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Precision represents the proportion of correctly classified positive instances among all instances 
classified as positive. Recall, in turn, indicates the proportion of correctly classified positive 
instances in relation to all positive instances in the data set. The ROC (Receiver Operating 
Characteristic) Curve is a graphical representation of the performance of a classification model 
as the discrimination threshold varies. It illustrates the true positive rate as a function of the 
false positive rate.  

The Confusion Matrix is a table that shows the performance of a classification model in terms 
of true positives, false positives, true negatives and false negatives, providing a detailed view of 
the model’s performance in different classes (Nalini Durga & Usha Rani, 2020). 

Decision Tree is one of the most popular and widely used machine learning algorithms for 
classification (Fletcher & Islam, 2020). This algorithm builds a hierarchical tree structure made 
up of nodes and edges. Each internal node of the tree represents a decision based on a specific 
characteristic, while the edges represent the possible outcomes of that decision. The leaves of 
the tree represent the output classes or prediction values. When making a prediction, the data 
travels through the decision tree, following the paths determined by the decisions at each node, 
until it reaches a leaf. Therefore, an interesting feature of the decision tree is its interpretability.  

Because the tree structure can be visualized as a decision flowchart, it is easy to understand and 
explain how the model makes predictions. This makes the decision tree a popular choice in 
scenarios where model interpretability is important. Furthermore, this algorithm makes it 
possible to calculate the importance of variables in the classification task (Louppe et al., 2013),  
which is useful for analyzing agricultural data, when many variables are obtained in experiments 
and the aim is to know how they impact treatments (de Oliveira et al., 2023). This importance 
is obtained from different criteria, such as the reduction of impurity in the nodes, or the gain of 
information when making a division. 

In the context of the scikit-learn package (Pedregosa et al., 2011), the main hyperparameters of 
a decision tree include: Split Criteria: Defines the function to measure the quality of a split, such 
as “gini” for the Gini index or “entropy” for information entropy; Maximum Tree Depth: 
Controls the maximum tree depth to avoid overfitting; Minimum number of samples per sheet: 
defines the minimum number of samples required on a sheet to perform a split; Minimum 
number of samples needed to split an internal node: Specifies the minimum number of samples 
needed in a node to consider splitting; Maximum number of features: limits the number of 
features to be considered in each division. 

 

3. Results 

Table 1 contains the experimental results obtained for each of the selected qualitative 
descriptors, according to the values they assume in accordance with the description made in 
Section 2.2 Qualitative Descriptors. In addition, the names of the genotypes and species are also 
included, which are used as classes in the machine learning scheme to learn the decision tree 
models. 

The proposed approach aims to obtain a decision tree model for classifying beans into two 
species. To this end, cross-validation with 5 folds was used to overcome overfitting. 
Furthermore, we computed the weight of the classes as they were unbalanced and this 
information was used in the decision tree model learning algorithm in order to adjust the model 
appropriately. Figure 1 (a) shows the ROC curves for each evaluation of the models learned in 
each of the 5 folds. The Area Under Curve (AUC) values for each fold stand out, in addition to 
the average values. The boxplots in Figure 1 (b) show the distribution of performance metrics 
values in cross-validation.
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Table 1. Experimental results of qualitative descriptors. 

Genotype Specie 
Seed 
 color 

Primary  
color 

Secondary  
color 

Seed  
shape 

Degree of 
seed flattening 

Seed  
brightness 

Seed  
halo 

Color of 
Seed Halo 

Paquito Bean Non-Uniform 95.00 5.00 Elliptical Flattened Intermediate Present Same 

Rajado 1 Bean Non-Uniform 90.00 10.00 Oblong/Long Reniform Flattened Intermediate Present Different 

Caupi Sempre Verde Cowpea Uniform 100.00 0.00 Elliptical Filled Opaque Present Different 

Caupi Nova Era Cowpea Uniform 100.00 0.00 Spherical Flattened Opaque Present Different 

Caupi BRS Guariba Cowpea Uniform 100.00 0.00 Spherical Semi filled  Opaque Present Different 

Caupi BRS Itaim Cowpea Uniform 100.00 0.00 Oblong/Medium Reniform  Filled Opaque Present Different 

Caupi BRS Tamucumaqui Cowpea Uniform 100.00 0.00 Spherical Flattened Opaque Present Different 

Vô Cid Cowpea Non-Uniform 90.00 10.00 Elliptical Semi filled  Opaque Present Same 

Rajado 2 Cowpea Non-Uniform 90.00 10.00 Oblong/Medium Reniform  Filled Bright Present Different 

Vermelho Dark Bean Uniform 100.00 0.00 Oblong/Short Reniform Filled Intermediate Present Different 

Vermelho Bean Uniform 100.00 0.00 Oblong/Long Reniform Flattened Bright Present Different 

Bolhinha Bean Uniform 100.00 0.00 Oblong/Short Reniform Filled Bright Present Different 

Bem Te-vi Bean Non-Uniform 95.00 5.00 Elliptical Flattened Opaque Present Different 

Branco Bean Uniform 100.00 0.00 Oblong/Long Reniform Filled Opaque Present Same 

Branco Dorama Bean Uniform 100.00 0.00 Oblong/Medium Reniform  Semi filled  Opaque Absent Same 

Feijão Preto Bean Uniform 100.00 0.00 Elliptical Semi filled  Intermediate Present Different 

TAA-Marhe Bean Non-Uniform 95.00 5.00 Elliptical Semi filled  Opaque Present Same 

Bean: Phaseolus vulgaris L.; Cowpea: Vigna unguiculata (L.) Walp. 
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Figure 2 illustrates the confusion matrices for the training and testing stages, both calculated as 
the average of the confusion matrices for each fold in cross-validation. These performance 
results, together with those shown by the ROC curves in Figure 1 (a), are used to select the best 
decision tree model. This will be used to obtain a flowchart for classifying beans in relation to 
their species. 

Figure 1. (a) ROC curve for each cross-validation fold, in addition to the average curve. (b) Boxplot of performance metrics values in cross-
validation. Accuracy (Acc), precision (Pr), and F1-score (F1). 

 

 

Figure 2. Confusion matrices calculated as the average of the confusion matrices of each fold in cross-validation. (a) train and (b) test stage.  

 

(a) 

 

(b) 
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Figure 3 highlights the importance of each of the variables (qualitative descriptors) for building 
the most accurate decision tree model. Which was selected according to the results shown in 
Figures 1 and 2. Therefore, among these variables, those with greater importance must compose 
the chosen decision tree model at some level. 

Finally, in Figure 4 we have a flowchart construction of the best decision tree model obtained. 
Although, at each node (yes or no decision point) of the model, the decision about which class 
a certain sample belongs to can be made, we prefer to leave decisions about classes to the last 
leaves of the tree (model). This ensures greater accuracy in classification, when going from the 
branches to the leaves. 

 

Figure 3. Bar chart with the importance of the variables for the best performing decision tree 
model. 
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Figure 4. Decision tree model that resulted in the highest performance among the models generated in cross-validation. 

 

4. Discussion 

The presented experimental results in Table 1 outline the qualitative descriptors obtained for 
each selected genotype, alongside their respective species. These descriptors, as detailed in 
Section 2.2, include seed color, primary and secondary color, seed shape, degree of seed 
flattening, seed brightness, presence of seed halo, and the color of the seed halo. These 
descriptors serve as crucial inputs for the machine learning scheme employed to construct 
decision tree models. 

Table 1 exhibits a diverse range of qualitative characteristics observed across the bean and 
cowpea genotypes. Notably, variations in seed color and shape are evident, with some genotypes 
displaying uniformity while others exhibit non-uniformity. For instance, genotypes like “Caupi 
Sempre Verde” and “Caupi Nova Era” demonstrate uniform seed color and shape, whereas 
genotypes like “Paquito” and “Rajado 1” display non-uniform characteristics. Additionally, the 
degree of seed flattening varies among the genotypes, with some having flattened seeds while 
others retain their original shape. Furthermore, the presence and characteristics of the seed halo 
contribute to the diversity observed among the genotypes. The presence of the seed halo, along 
with its color, differs across the genotypes, suggesting potential variations in seed composition 
or protective features (Table 1). 

These experimental findings provide valuable insights into the genetic diversity present within 
the bean and cowpea populations studied. Such diversity is essential for breeding programs 
aimed at enhancing crop resilience, productivity, and nutritional value. Moreover, the utilization 
of machine learning techniques, utilizing these qualitative descriptors, facilitates the 
development of decision tree models for genotype classification and selection, thereby aiding in 
the advancement of agricultural research and crop improvement strategies. The integration of 
these findings into scientific discourse contributes to a deeper understanding of plant genetics 
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and informs future efforts in crop breeding and genetic resource conservation (Parmley et al., 
2019; Yoosefzadeh Najafabadi et al., 2023). 

The results of the five-fold cross-validation for the decision tree model to classify beans are 
presented in Figure 1 (a). The Area Under the Curve (AUC) is a metric used to assess the 
performance of binary classification models. It represents the probability that the model will 
rank a randomly chosen positive instance higher than a randomly chosen negative instance 
(Hajian-Tilaki, 2013). In this case, a positive instance is a bean belonging to a specific class 
(specie), and a negative instance is a bean belonging to another class. The AUC values for each 
fold varied between 0.25 and 1.00, with an average AUC of 0.65 ± 0.25. A perfect classifier 
would have an AUC of 1.0, while a random classifier would have an AUC of 0.5 (Gorunescu, 
2011). Therefore, the results indicate that the decision tree model performed moderately well in 
classifying the bean species. However, the high standard deviation (0.25) suggests that the 
performance may vary across different datasets. This is partly due to the small number of 
samples available. Nonetheless, fold 2 achieved a perfect classification (AUC = 1.00), which 
indicates that the model was able to correctly classify all bean samples in this fold. On the other 
hand, fold 5 achieved a very low AUC (0.25), which suggests that the model performed poorly 
in classifying the bean samples. This variability in performance across folds highlights the 
importance of cross-validation to assess the generalizability of the model (Kohavi, 1995). 

The performance metrics of the decision tree model for classifying beans is summarized in the 
boxplots of Figure 1 (b). The boxplots depict the distribution of three performance metrics 
across the five folds of the cross-validation process: accuracy (Acc), precision (Pr), and F1-score 
(F1). The accuracy metric represents the proportion of bean samples that the model classified 
correctly. The boxplot for accuracy shows a median value of 0.8, indicating that the model 
achieved an accuracy of 80% on average across the folds. The interquartile range (IQR) spans 
from 0.7 to 0.9, suggesting that the accuracy remained relatively stable across most of the folds. 
However, there were outliers, with a minimum accuracy of 0.6 and a maximum accuracy of 1.0. 
The presence of outliers suggests that the model’s accuracy may vary on different datasets. 

Precision refers to the proportion of positive predictions that were truly positive. In this case, a 
positive prediction is a bean sample that the model classified as belonging to a specific class 
(specie). The precision boxplot shows a median value of 0.75, indicating that on average, 75% 
of the time the model predicted a bean to belong to a specific class, it was correct. The IQR for 
precision ranges from 0.65 to 0.9, which is similar to the IQR for accuracy. This suggests that 
the model’s precision was also relatively stable across most of the folds. However, similar to 
accuracy, there were outliers for precision, with a minimum of 0.4 and a maximum of 1.0. 

The F1-score is a harmonic mean between precision and recall. It considers both the model’s 
ability to correctly identify positive samples (precision) and its ability to avoid incorrectly 
classifying negative samples (recall). A perfect F1-score of 1.0 indicates that the model is 
performing well in both aspects. The F1-score boxplot shows a median value of 0.8, which is 
consistent with the median accuracies and precision values. The IQR for F1-score ranges from 
0.65 to 0.9, again similar to the IQRs for the other metrics. This suggests that the model’s F1-
score also remained relatively stable across most folds. There were outliers for F1-score, with a 
minimum of 0.5 and a maximum of 1.0. 

Overall, the performance metrics in the boxplots suggest that the decision tree model achieved 
moderate performance in classifying bean samples. The model’s accuracy, precision, and F1-
score were all around 0.8 on average, with some variation across folds. However, the main 
objective of this research is to obtain a decision tree model with high accuracy, to convert it into 
a flowchart to assist in the designation of bean species. Therefore, this variation has little effect 
on the desired result, as long as we have at least one model with high accuracy in the test set. 
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The confusion matrices in Figure 2 provide a more detailed picture of the decision tree model’s 
performance on both the training and testing stages. These confusion matrices are calculated as 
the average of the confusion matrices for each fold in the cross-validation process. A confusion 
matrix is a table that summarizes the number of correct and incorrect predictions made by a 
classification model. The rows represent the actual classes of the bean samples, and the columns 
represent the classes predicted by the model. Ideally, a good model would have most of its 
values concentrated on the diagonal, where the actual class and the predicted class match 
(Heydarian et al., 2022). 

The confusion matrix for the training stage ─ Figure 2 (a) ─ shows the model’s performance 
on the data it was trained on. It results is an ideal scenario, since the training confusion matrix 
have a high number of data points on the diagonal (zero on the secondary diagonal), indicating 
that the model learned the patterns in the training data perfectly and can classify those samples 
correctly. The confusion matrix for the testing stage ─ Figure 2 (b) ─ shows the model’s 
performance on unseen data. This is more important than the training stage’s performance, as 
it generalizes how well the model will perform on new data. On average, 0.4 samples from the 
Vigna unguiculata L. Walp. class were mistakenly classified as being from the Phaseolus vulgaris L. 
class. While on average 0.6 samples of the Phaseolus vulgaris L. species were mistakenly classified 
as being of the Vigna unguiculata L. Walp. species. In general, there were more classifications in 
the correct classes (species) than confusions in the classified ones, even for unknown data in 
the testing stage. 

Using the best performing model based on the results illustrated in Figures 1 and 2, the 
importance of each attribute (variable) is calculated as shown in Figure 3. When building a 
decision tree, as part of the machine learning process, the importance of attributes is calculated 
to determine which characteristics have the greatest influence on the model’s decision making. 
Gini importance is calculated by measuring how much each attribute improves the purity of the 
tree nodes (Tangirala, 2020). For each split in a node, the algorithm calculates the Gini gain, 
which is the difference between the Gini index of the parent node and the weighted sum of the 
Gini indexes of the child nodes. The Gini importance of an attribute is then determined by 
summing the Gini gains for all divisions in which the attribute is used (Sivagama Sundhari, 
2011). In Figure 3 we note that the Secondary color and Seed halo variables are not important 
for classifying the samples into the species used here. Comparing these results with the values 
collected in the experiment (Table 1) it is not difficult to understand why. As we can see, the 
Secondary color variable has several null values for both species. While for the variable Seed 
halo all values are equal to “Present” except for the genotype “Branco Dorama”. Therefore, the 
variance of these attributes is very low, and therefore, they do not contribute to the construction 
of the decision tree model. 

Finally, in Figure 4 we have the decision tree model displayed as a flowchart. This model is the 
one that presented the greatest accuracy in cross-validation. The flowchart is an adaptation of 
the model generated by the scikit-learn package (Pedregosa et al., 2011), as it only works with 
numerical data for attributes. Then it was necessary to convert the cutoff values, returned as real 
numbers, to the qualitative values detailed in Section 2.2. We can notice that the variables with 
the greatest importance were used in it, according to Figure 4. Although Seed shape is the 
variable with the highest importance value, it appears on the second level of the flowchart. 
However, it is decisive in determining the class (species), as there is no level after it. We also 
noticed that the least important variable, namely Degree of seed flattening, did not appear in 
the selected model. Using this flowchart model, we were able to determine the class (specie) of 
any of the samples presented in Table 1 with 100% accuracy. 

It is necessary to emphasize that although the model obtained can be generalized to other data, 
including other cultivars, the same accuracy cannot be guaranteed. This is an expected 
characteristic of this machine learning model, as the dataset used for training is not extensive. 
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And this generalization deficiency is reflected in the results in Figures 1 and 2, where we noticed 
that for certain folds the performance metrics were low. 

We conclude that the model obtained is viable to be executed for bean classification and can be 
used for various purposes. From didactic purposes in teaching environments, through practical 
applications such as use on farms to determine whether a sample is presenting the appropriate 
characteristics, to breeding programs where the model can be used to determine whether a 
certain sample of a species is presenting qualitative characteristics common to the other. 
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