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Abstract: In modern agriculture, the efficiency of agricultural machinery is crucial to achieve 
optimum performance. Inspection of weld quality becomes an essential component in 
assessing the integrity of machinery structures. This study presents an innovative approach by 
addressing pore segmentation in low-quality industrial radiographic images, using advanced 
image processing and adaptive segmentation techniques. The process aims to improve image 
quality for more accurate segmentation. It involves converting images to greyscale and applying 
Gaussian and Median filters. The methodology relies on adaptive thresholding and edge 
detection using Canny's algorithm, achieving highly accurate pore area measurements. 
Measurement errors are less than 0.1 mm², demonstrating the consistency and accuracy of the 
method. The model achieved precision, recall, and F1-Score metrics of 97.52%, 98.33%, and 
97.92%, respectively. These values underscore the model's applicability in the task of 
segmenting radiographic images, showcasing its ability to achieve accurate identification of 
regions of interest and provide reliable measurements. Although further research is needed to 
improve contrast and illumination and address potential sources of error, these refinements 
have the potential to enhance an already reliable and accurate method with a wide reach in 
industry. The method presented not only provides a solution for pore detection in radiographic 
images but also proves to be a valuable asset for industrial radiography applications, 
encompassing quality control, defect analysis, and demonstrating potential applications in 
modern agriculture and production engineering. 

Keywords: radiographic image segmentation; adaptive thresholding; pore detection; industrial 
radiography; morphological analysis. 

______________ 

1. Introduction 

Welding is a critical aspect of manufacturing and maintaining agricultural equipment. It directly 
impacts the efficiency, durability, and safety of equipment such as tractors, harvesters, and 
seeders. These machines are frequently exposed to external factors like wind, harsh weather 
conditions, and dirt accumulation in their operating environment (Melibaev et al., 2022). 
Inspection of weld quality has become vital in ensuring reliable performance of agricultural 
machinery. The integrity of welds affects not only the structural robustness of equipment but 
also operator safety and operational efficiency. Thorough assessments of joints and critical 
points of structures are necessary for inspecting weld quality (Szusta et al., 2023). 

The quality of welds is crucial in numerous industries, including construction, aerospace, 
automotive, and agriculture (BD, 2020; Hernández et al., 2020; McPheron & Stwalley, 2022; 
Pérez de la Parte et al., 2022; Wang et al., 2021). The presence of defects in welds, especially 
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pores, can have serious consequences ranging from loss of structural integrity to threatening the 
safety and performance of products and structures (Yahaghi et al., 2021). Pores, which are small 
cavities or holes in welds, can be filled with gases resulting from metal contamination or metal 
melting, and their negative impact is undeniable. They weaken the weld joint, reduce its 
mechanical strength, and facilitate corrosion (Li et al., 2022). In addition, pores can serve as 
starting points for the formation of cracks and fractures, potentially leading to catastrophic 
failures in critical components (Jonsson et al., 2016). 

Efficient pore segmentation in industrial radiographic imaging is a key technological tool at the 
intersection between material science and agricultural challenges. Advanced image processing 
techniques are used for pore segmentation, making it an indispensable instrument that 
contributes to strategic planning and the implementation of more efficient and sustainable 
agricultural practices. Accurately identifying and measuring pores within agricultural equipment 
structures is crucial in assessing the quality of welded joints and operational efficiency (Açar et 
al., 2023; Haievskyi et al., 2020; Kappaun et al., 2021; Wells & Miller, 2022). 

In this context, industrial radiography emerges as a valuable tool for detecting pore defects in 
welds and, in general, as a nondestructive method to evaluate the quality of welded joints 
(Dwivedi et al., 2018; Golodov & Maltseva, 2022; Patil et al., 2021; Tyystjärvi et al., 2022; Wang 
& Gao, 2021; Wang & Yu, 2023; Zhang et al., 2023). Industrial radiography detects non-visible 
defects in materials using shortwave X-rays, gamma rays, and neutrons, revealing pores or 
discontinuities (Rafiei et al., 2023). This technique offers several advantages, such as the ability 
to inspect welds of varying thicknesses, identify subsurface defects, and evaluate welds in hard-
to-reach areas. In addition, industrial radiography is fast and efficient, (Eckel et al., 2020; Liu et 
al., 2022; Wang et al., 2022) resulting in an effective and time-saving nondestructive inspection. 

Image processing is integrated essentially into this inspection technique (Ríos et al., 2022). It 
provides greater accuracy in the detection and characterization of pore defects in welds, even 
those of microscopic dimensions that may escape conventional visual observation. It allows 
pores to be segmented and classified efficiently, providing detailed information about their size, 
shape, and location. Ultimately, image processing contributes to an accurate assessment of weld 
quality, which is critical in industries where integrity and safety are priorities (Zhan et al., 2018). 

Several authors have focused their studies on digital image processing techniques to segment 
weld defects in radiographic images. In the research of Liu et al. (Liu et al., 2022), the authors 
propose a new approach based on an improved Chan-Vese model to detect weld defects in X-
ray images. This improved model consists of three stages: in the first, the region of interest is 
detected; in the second, the Fuzzy C-Mean (FCM) algorithm is used to choose a group as the 
initial contour; and in the third, the Chan-Vese model is applied with the selected initial contour 
to segment the images and obtain the defect boundaries. 

On the other hand, Radi et al. (Radi et al., 2022) use convolutional neural networks (CNN) to 
segment horizontal defects and separate background and vertical defects. And in the research 
of Gong et al. (Gong et al., 2022) relies on transfer learning to use Faster R-CNN for localization 
and detection of small defects. 

Threshold segmentation, a classic technique in image processing, stands out for its efficiency in 
terms of computational resource usage and speed of execution. Because of these advantages, it 
has become a frequent choice in industrial X-ray inspection applications. The wide applications 
of common thresholding methods, such as adaptive thresholding (León Ovelar et al., 2021), 
Otsu thresholding (Niño et al., 2021), and others have been investigated by several researchers. 

Duan et al.  (Duan et al., 2019) use adaptive thresholding to extract defects that are subsequently 
classified using the adaptive cascade boosting algorithm (AdaBoost). On the other hand,  Zhang 
et al. (Zhang et al., 2018) combine the adaptive thresholding segmentation algorithm and 
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mathematical morphology reconstruction, and the results obtained by these authors validate the 
use of these techniques in radiographic image segmentation. 

Aslam et al. (Aslam et al., 2019), combine the Cuckoo Optimization Algorithm (COA) with 
adaptive thresholding to solve the problem of detection and estimation of surface defects on 
metallic surfaces. The proposed method was able to adapt the dynamic step size, adaptively 
changing with the search to improve the convergence rate and local search capability. 

Truong et al. (Truong & Kim, 2018) present an automatic thresholding technique that represents 
an improvement over Otsu's approach by incorporating an entropy-based weighting scheme. 
This methodology can identify areas with defects of reduced dimensions about the total surface 
area of the product. Other authors such as Liu et al. (Liu & Yang, 2017) use Otsu's thresholding 
method to identify the characteristics of holes inside the concrete surface. 

In a similar research Li et al. (Li et al., 2023) designed an adaptive threshold segmentation 
module that performs the threshold segmentation of the SU-Net network model, which verifies 
the feasibility of this method. The use of adaptive thresholding is chosen by the authors for its 
ability to process images with uneven illumination as is the case in the research of Contreras et 
al. (Contreras et al., 2022). This type of classical approach allows to perform image segmentation 
by separating the defect from the background and is very useful in processing noisy images. 

Throughout the literature, several authors use adaptive threshold segmentation in various 
applications using radiographic images. However, it should be noted that this technique tends 
not to be frequently applied in low-quality images, such as those presented by CENEX 
(Defectoscopy and Welding Technical Services Company) where other approaches are often 
preferred. In addition, it is important to mention that few studies combine adaptive thresholding 
with mathematical morphological analysis for accurate calculation of defect area. Therefore, in 
this research, these techniques are used in image processing with uneven illumination, noise, 
and low contrast. 

2. Materials and Methods 

The set of radiographic images used in the welding defect segmentation task is composed of 
radiographs that are part of the historical archive of CENEX in Cuba. 50 samples were selected 
from a set of images that have been collected over more than 10 years, which means that the 
digitization conditions have not been constant in all of them. The samples are of dimensions 
300x300 pixels and relate to welds that exhibited pore defects, evenly distributed between 
individual pore defects and pore clusters.  

To carry out the segmentation experiments, we took advantage of a Google Colab instance 
equipped with an Nvidia Tesla T4 GPU. This configuration was essential to accelerate the 
processing of fundamental libraries in the field of image processing, such as OpenCV, NumPy, 
and scikit-image. The choice of this platform was based on its accessibility, ease of use, and 
availability of computational resources, which enabled the efficient execution of experiments 
without incurring additional costs. 

Image processing involves several stages, as detailed in Figure 1. In the first stage, an image in 
RGB format, containing multiple color channels, was used as input to the process. To simplify 
processing and reduce data complexity, the original image was transformed to grayscale. This 
transformation involved converting the image from three color channels (red, green, and blue) 
to a single channel representing the luminous intensity in each pixel. 
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Figure 1. Algorithm for radiographic image processing, edge detection, and defect characterization. 

 

Next, several filters were applied to improve the image quality and prepare it for pore 
segmentation. A Gaussian filter was used to smooth the image and reduce noise, followed by a 
median filter to further remove any unwanted interference. 

Next, the pore segmentation stage was performed using an adaptive thresholding technique. 
This technique identified areas of interest in the image where pores were suspected to be located. 
Subsequently, the Canny edge detector was applied to highlight the contours of the pores and 
define their boundaries more clearly. 

Finally, a morphological analysis of the segmented image was performed to measure the area of 
the identified pores. To perform the calibration, a known length must first be accurately 
measured in the original image, which can be achieved by using an object with known real 
dimensions or a reference in the image that is measurable in the real world, such as a ruler. For 
this purpose, a conversion factor relating pixels in the image to units of millimeters was used, 
allowing accurate measurements of pores in terms of size and distribution to be obtained. To 
find this conversion factor, the image quality indicator (IQI) measurements used at CENEX for 
the analysis of these images were used.  

IQIs are objects that are placed next to the object to be radiographed and help to evaluate the 
quality of the radiographic image. In the context of DIN standards, a “DIN Wire Type IQI” 
refers to an image quality indicator that uses reference wires with specific sizes and 
characteristics to verify the quality of radiographic images. For this research, images presenting 
a 6 FE DIN IQI were analyzed. The dimensions of this indicator are illustrated in Table 1 
according to DIN EN ISO 19232-1. 

Table 1. IQI 6 FE size and wire identification numbers. 

Wire Diameter Wire Identity 

0.0393” (1.00 MM) 6 

0.0315” (0.80 MM) 7 

0.0248” (0.63 MM) 8 

0.0196” (0.50 MM) 9 

0.0157” (0.40 MM) 10 

0.0126” (0.32 MM) 11 

0.0098” (0.25 MM) 12 

 

To perform the calibration, the dimensions of each wire were taken on 10 sample images to 
obtain robust and reliable measurements. By working with multiple images, it is possible to 
capture the variability that may be present due to factors such as camera position and focus, as 
well as possible fluctuations in lighting conditions. This strategy of acquiring a larger data set 
reduces the influence of potential outliers or random errors in a single measurement. This broad 
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image-processing scheme allowed detailed information on the morphology of the pores in the 
radiographs to be obtained, which facilitated the analysis and characterization of these 
components in the study. 

 

2.1 Image processing 

The choice to change the original X-ray images, originally in RGB format, to a grayscale 
representation was based on the need to perform a quantitative analysis of the porosity. This 
transformation was performed using the OpenCV function cv2.cvtColor, which assigned each 
pixel a unique value reflecting its intensity in shades of gray. This modification became essential 
to eliminate unnecessary color information and simplify the analysis process by focusing 
exclusively on light intensity. This simplified approach proved beneficial for the subsequent 
stages of analysis. 

The need to apply filters to images is based on the presence of noise, specifically Gaussian and 
salt and pepper noise. Noise in images can be problematic, as it introduces unwanted variations 
in pixel intensity, which negatively affects image quality and can make it difficult to detect and 
segment objects of interest. In the case of Gaussian noise, this type of noise introduces random 
fluctuations in pixel intensity values, often resulting in an image with a "fuzzy" or finely textured 
grainy appearance. 

To counteract this effect and improve image contrast, a Gaussian filter was applied. This filter 
was applied after converting the original X-ray images from RGB to grayscale format, for 
quantitative porosity analysis. The kernel size of the filter was set to (11, 11), which indicated 
that a window of 11x11 pixels was used for smoothing. The standard deviation in the horizontal 
direction was left at 0, allowing OpenCV to automatically calculate its value based on the kernel 
size. 

The Gaussian filter played a crucial role in counteracting the adverse effects of Gaussian noise 
in the images (Kumar & Sodhi, 2020). By removing high-frequency fluctuations, this filter was 
able to smooth the image, thus generating a more uniform and easier-to-process representation. 
The application of this smoothing technique provided a significant improvement in the overall 
image contrast, which played an essential role in the pre-preparation of the images before 
carrying out additional stages of analysis and segmentation of the defects in the welds. 

On the other hand, salt and pepper noise is a type of noise that causes extremely dark pixels 
(pepper) and extremely bright pixels (salt) to appear in the image. This type of noise can be very 
disruptive and make it difficult to detect important objects and features (Liang et al., 2021). To 
mitigate this effect, a median filter was also applied, which in this case was responsible for 
removing or reducing the salt and pepper pixels, thus restoring image coherence. The median 
filter was set to a window size of 45x45 pixels. This choice was the result of previous 
experimentation and resulted in a filtered image that preserved relevant details while removing 
unwanted noise. In the research of Hu, A. et al. (Hu et al., 2022), the use of this filter in 
radiographic images is validated. 

The combination of these two filtering strategies helped to improve the quality of the images, 
which facilitated the segmentation and subsequent analysis of the weld defects. This pre-
processing is essential to ensure that the objects of interest are clearly defined and accurately 
measurable in the image. It also helps to eliminate noise and illumination variations that can 
affect the detection and measurement of pores and cracks in welds. 

After applying the median filter, binarization of the images was performed. Binarization is a 
specific process that involves the conversion of a greyscale or color image to a binary image. In 
a binary image, each pixel is assigned to one of two possible values, usually 0 (black) or 255 
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(white), where 0 represents the background or unwanted regions, and 255 represents objects of 
interest, such as pores, edges or other elements to be highlighted. Binarization is based on a 
threshold that determines when a pixel is assigned to one class or another and can be global (the 
same threshold for the whole image) or local (different thresholds for different regions of the 
image) (Choi & Ha, 2023). The basic formula for binarization can be expressed as follows (1): 

𝑇(𝑥, 𝑦) = 𝑓 (𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑥, 𝑦)) (1) 

where 𝑇(𝑥, 𝑦) is the threshold calculated for the pixel at position (𝑥, 𝑦), 𝑓 is a function that 
calculates the local threshold as a function of the characteristics of the neighbourhood of the 

pixel and 𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑥, 𝑦) represents the characteristics or statistics of the neighborhood 

around the pixel (𝑥, 𝑦), which may include mean, median, standard deviation, etc., depending 
on the specific method. 

The algorithm for applying thresholding is as follows (2): 

𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 = (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 >
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  ?  𝑊ℎ𝑖𝑡𝑒 𝑉𝑎𝑙𝑢𝑒 ∶ 𝐵𝑙𝑎𝑐𝑘 𝑉𝑎𝑙𝑢𝑒) 

(2) 

where Binarized pixel is the pixel value in the binary image (usually 0 for black and 255 for 
white), Original pixel is the value of the pixel in the greyscale image, Threshold is the threshold 
value that determines whether a pixel is assigned to the black or white value, White value is the 
value assigned to the pixel if the condition (Original pixel > Threshold) is true (usually 255 or 
white), and Black value is the value assigned to the pixel if the condition (Original Pixel > 
Threshold) is false (usually 0 or black). 

The filtered images were binarized using the adaptive thresholding method. This process 
separates the image into regions of white (pores) and black (backgrounds) pixels. Adaptive 
thresholding is used to divide an image into smaller regions and apply different thresholds to 
each of these regions. This is useful when the image illumination varies significantly in different 
parts of the image. The choice of threshold is critical and can be a fixed value (global threshold) 
or adaptively calculated for different regions of the image (adaptive threshold). The threshold 
value may vary depending on the application and the nature of the image. 

In adaptive thresholding, the threshold is calculated based on local image properties, such as 
the average or standard deviation in a neighborhood around each pixel, which allows for more 
robust binarization in images with irregular illumination or contrast variations. The 
segmentation in this work was performed using the cv2.ADAPTIVE_THRESH_MEAN_C 
method in OpenCV, known as mean-based adaptive thresholding (3). In this research, a block 
size of 101x101 pixels was used to calculate the local thresholds. 

𝑇(𝑥, 𝑦) = 𝑚𝑒𝑎𝑛 (𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑥, 𝑦)) − 𝐶 (3) 

where C is a constant, which is not constrained to a specific range and can vary depending on 
the context of the application and the characteristics of the processed images. 

The algorithm followed in using this method was as follows: 

1. The grayscale image is divided into small regions or blocks of size 101x101. In each of these 
blocks, a local threshold is calculated. 

2. To calculate the local threshold in each block, the average of the pixel values within that block 
is taken and a constant (C) is subtracted.  
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3. After calculating the local thresholds for all blocks in the image, these thresholds are then 
applied to the entire image. Each pixel is subjected to a comparison with the corresponding 
threshold in its block, resulting in its binarization to white (255) if its value exceeds the local 
threshold or to black (0) if its value is less than or equal to the local threshold. This process is 
repeated for each region of the image, where a local threshold is calculated based on the intensity 
statistics of that specific region. Pixels exhibiting intensities below this local threshold are 
assigned to black, while those above the threshold are assigned to white. If a region containing 
a defect exhibits an average intensity that is lower than its local threshold, pixels representing 
the defect are marked as black. 

This adaptive thresholding approach is useful when the illumination is not uniform throughout 
the image or when there are significant variations in contrast in different parts of the image as 
presented in these CENEX images. Instead of using a global threshold, it adapts locally to image 
features in small regions, which can improve segmentation accuracy.  

Once the images were segmented, the Canny operator was applied to detect the edges and 
contours of the objects of interest in the binarized image. This helps to clearly define the shape 
and location of the pores. Edge detection with thresholds of 50 and 150 was applied to highlight 
relevant details in the images. 

The mathematical formula for the Canny operator can be expressed in general terms as follows: 

1. Gradient Detection:  First, the gradients of the image are calculated to find the areas of rapid 
change in pixel intensity. This is done by applying convolution operators such as the Sobel 
operator in the horizontal and vertical directions. These gradients are calculated as follows (4): 

𝐺𝑥 = 𝐼 ∗ 𝐾𝑥 
(4) 

𝐺𝑦 = 𝐼 ∗  𝐾𝑦 

where 𝐺𝑥and 𝐺𝑦 are the gradient images in the horizontal and vertical directions, respectively, 𝐼 

is the original image, 𝐾𝑥 and 𝐾𝑦 are the kernels of the Sobel operator or any other gradient 

operator used. 

2. Gradient Magnitude and Direction: Next, the magnitude of the gradient at each pixel is 

calculated using the gradient images 𝐺𝑥 and 𝐺𝑦. The magnitude of the gradient is calculated as 

(5): 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝐺2
𝑥 + 𝐺2

𝑦 (5) 

The direction of the gradient, which represents the direction of maximum change in intensity, 
is also calculated and is obtained using the arctangent function (6): 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑡𝑎𝑛2(𝐺𝑥, 𝐺𝑦) (6) 

3. Non-maximum suppression: To reduce edges to a single line of pixels wide, non-maximum 
suppression is applied. This involves traversing the image and, for each pixel, checking whether 
its gradient magnitude is a maximum in the direction of its gradient. If it is, it is retained as an 
edge pixel; otherwise, it is suppressed. 

4. Hysteresis thresholding: Finally, hysteresis thresholding is applied to detect end edges. Two 
thresholds are used, one high and one low. Pixels with gradient magnitude above the high 
threshold are considered strong edge pixels, and pixels below the low threshold are discarded. 
Pixels whose gradient magnitude lies between these two thresholds are considered weak edge 
pixels. However, if a weak edge pixel is connected to a strong edge pixel, it is considered part 
of the final edge. 
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2.2 Mathematical morphological operations 

After edge detection, mathematical morphological operations, such as dilation with a 5x5 pixel 
kernel, are applied to further improve object detection. These operations are used to connect 
nearby regions of pixels and remove small unwanted details, which facilitates subsequent 
measurements. After carrying out these operations, morphological analysis is performed to 
calculate the diameter and area of the detected contours, known as morphological analysis based 
on mathematical morphology. This process allows measuring and characterizing the properties 
of the objects and regions present in the image, in this case focusing on the contours identified 
during edge detection. In addition, a record is kept of the number of contours identified in the 
images to determine the number of pores in the samples. 

To measure the characteristics of each contour, the diameter of the object in pixels is calculated 
by obtaining the minimum circle surrounding it, using the function cv2.minEnclosingCircle. 
Subsequently, a unit conversion is performed to express the pore area in square millimeters 
(mm²), following the algorithm described in Figure 2. 

 

Figure 2. Algorithm to find and apply the conversion factor to measure the area of defects found in radiographic images. 

 

The standard deviation was calculated to measure the dispersion of the data about the mean 
value, and the error in the measurements was calculated to assess their precision and understand 
the associated uncertainty. These analyses are crucial to determine the reliability of the 
measurements in the context of the sample images. 

Once the length in pixels has been measured and its actual length in millimeters is known, the 
conversion factor is calculated by dividing the actual length by the length in pixels. This 
conversion factor indicates how many pixels correspond to one millimeter in the image. In the 
sample images, the resulting conversion factor was 0.00943 pixels per millimeter. 

The conversion factor previously calculated, is then applied to the measurements made on the 
images. This allows the dimensions of objects and features to be accurately converted from 
pixels to millimeters. Therefore, this factor ensures that the dimensions of the objects captured 
in the image are correctly related to the dimensions of the physical world, providing accurate 
and applicable measurements in the evaluation of the objects of interest in the image. 

 

2.3 Evaluation metrics 

The performance of the algorithm was evaluated by comparing metric results, calculated using 
the Python Scikit-learn package (Batallas et al., 2020). The quantitative assessment of the 
algorithm's performance includes precision, recall, and F1 Score, analyzing its capability for 
accurate segmentations. These metrics are defined using the abbreviations TP (true positives), 
TN (true negatives), FP (false positives), and FN (false negatives).    

Precision: The proportion of true positives (TP) among all cases classified as positive by the 
model (TP + FP). It is useful when false positives are to be minimized (7). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (7) 

Recall: It is the proportion of true positives (TP) among all positive cases present in the test 
data (TP + FN). Sensitivity is used when it is crucial to identify all positive cases, even if this 
implies having some false positives (8). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (8) 

F1-Score: It is a metric that combines precision and sensitivity into a single measure that 
provides a balance between the two. It is calculated as the harmonic mean of accuracy and 
sensitivity, and is useful when seeking a balance between accurately identifying positive cases 
and minimizing false positives (9). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (9) 

These metrics provide a quantitative assessment of the model’s performance by analyzing its 
ability to perform accurate segmentations. 

3. Results and Discussion 

The set of images presents notable challenges, such as reduced contrast, non-uniform gray level 
distribution, the presence of noise, and variations in illumination. The RGB images are shown 
in Figure 3(a). 

 

Figure 3. Original images (a), images converted to grayscale (b), Gaussian filtered images (c), Median-filtered images (d). 

 

The result of applying greyscale conversion of these images after applying the OpenCV 
cv2.cvtColor function, is illustrated in Figure 3(b). In Figure 3(c) and Figure 3(d) the same 
images are shown after applying the Gaussian and Median filter respectively.  

The filtered images were binarized using the adaptive thresholding method. The choice of the 
optimal value of the constant (C) in the segmentation process is crucial to obtaining accurate 
and meaningful results. The main goal of segmentation is to accurately distinguish areas of 
interest from the background in an image. 
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When analyzing Figures 4(a) and 4(b), with lower C values (2 and 4), it is observed that the 
algorithm does not achieve an effective separation, confusing the background with the objects 
of interest. This indicates that these C values are not suitable for this application. 

 

Figure 4. Segmented images using adaptive thresholding with different C values: (a) C = 2; (b) C = 4; (c) C = 6; (d) C = 8; (e) C = 10; 
(f) C = 12. 

As the value of C increases, there is an improvement in the resolution of details in the 
segmentation, as is evident in Figures 4(c) and 4(d) with C = 6 and C = 8, respectively. With C 
= 8, objects are better distinguished, and a clearer segmentation is achieved. This is essential 
when looking for sharp contours and adequate separation between the objects of interest and 
the background. In Figures 4(e) and 4(f), with higher C values (C = 10 and C = 12), a loss of 
detail and a tendency to over-segmentation is observed. This means that the algorithm is 
dividing the image into smaller regions than necessary, which could lead to the loss of important 
information and a less accurate interpretation of the image. The choice of C = 8 seems to strike 
the right balance between detail resolution capability and minimizing over-segmentation. While 
there may still be areas that are not perfectly segmented, this value of C achieves generally 
satisfactory results, as evidenced in Figure 4(d). 

The value C = 8 is considered the optimal constant for segmentation in this particular context 
due to its ability to achieve an effective balance between discrimination, detail resolution, and 
prevention of over-segmentation. This choice was based on the evaluation of multiple factors 
and effectively fits the needs of this particular study. It is important to note that the choice of 
this value may vary depending on the application and the specific characteristics of the images, 
but in this context, C = 8 offers a balanced and adequate performance. The result of applying 
the value of C=8 in the image binarization process is shown in Figure 5 in two sample images. 
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Figure 5. Segmented images using adaptive thresholding: (a) group of pores; (b) pore. 

 

Figure 6 illustrates the outcome of applying the Canny algorithm to detect pore contours in the 
binarized images. This process highlighted the edges of the pores, enabling enhanced 
visualization and analysis of the features of interest. 

 

Figure 6. Representation of defect contours: (a) group of pores; (b) pore. 

 

The result of the application of the conversion factor to the sample images is illustrated in Table 
2, where a comparison of the results obtained by CENEX specialists and the proposed 
algorithm for the analyzed images is made. The areas marked in red represent the contours 
detected by the algorithm proposed in this study in three sample images. 

 

Table 2. Comparison of the dimensions of the defect areas calculated by the certified experts and the proposed algorithm. 

Image 
Number of 
contours 

Defect area 
calculated by 

expert 

Defect area 
calculated in this 

research 
Area Difference 

Percentage 
Difference 

 

1 1.00 mm2 0.9698 mm2 0.0302 mm2 3.02% 
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Image 
Number of 
contours 

Defect area 
calculated by 

expert 

Defect area 
calculated in this 

research 
Area Difference 

Percentage 
Difference 

 

1 0.60 mm2 0.4957 mm2 0.1043 mm2 10.43% 

 

1 0.55 mm2 0.5040 mm2 0.046 mm2 

 
 
 
4.6% 
 
 
 

 

1 0.20 mm2 0.1006 mm2 0.0994 mm2 9.94% 

 

1 0.40 mm2 0.3297 mm2 0.0703 mm2 7.03% 

 

2 - 0.1230 mm2 - - 

 

Table 2 presents a comparison between the defect areas calculated by an expert and the defect 
areas calculated in the course of this research on two samples. These measurements are essential 
for the evaluation of the quality and integrity of X-ray images, especially in applications where 
accuracy is essential, such as the detection of defects in materials. 

A key observation from Table 2 is that the defect areas calculated in this research are notoriously 
similar to those provided by the expert as the percentage differences between the areas 
calculated by this algorithm and that reported by the experts range from 3.02% to 10.43%. 
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Furthermore, it can be noted that the errors in the measurements in no case exceed 0.1 mm². 
This consistency indicates that the measurement approach used in the research is consistent and 
not significantly affected by external factors or variability in the images. 

However, it is important to note that this algorithm detects a defect that was not identified by 
the certified experts. This difference could be due to several reasons, such as possible variations 
in the measurement technique, interpretation of the defect boundaries, or the quality of the 
images, which could have hindered an accurate measurement by the experts. The interpretation 
of this result is that it is a false positive.   The comparison between the defect areas calculated 
by the algorithm and those provided by CENEX shows consistency in the analysis method 
used. However, any systematic trends leading to significant differences should be investigated 
and addressed to further improve the accuracy of the method and ensure quality in inspection 
and quality control applications. The algorithm detected a total of three false positives and two 
false negatives. The results of the evaluation metrics are detailed in Table 3. 

Table 3. Values of the metrics obtained by the proposed algorithm in the segmentation of the images. 

Metrics Values 

Precision (7) 97.52% 

Recall (8) 98.33% 

F1-Score (9) 97.92% 

 

The results in Table 3 indicate a solid performance on the segmentation task, revealing an 
accuracy of 97.52%, a recall of 98.33%, and an F1-Score of 97.92%. The accuracy of 97.52% 
suggests that most of the pixels classified as part of the segmentation are, in fact, part of the 
region of interest, reflecting a low false positive rate. On the other hand, the recall of 98.33% 
indicates that the model is capturing the vast majority of the relevant pixels in the segmentation, 
demonstrating an outstanding ability to correctly identify the region of interest. The F1-Score, 
which combines precision and recall, reaches a solid 97.92%, underlining an effective balance 
between both metrics and highlighting the robustness of the model in the segmentation task. 

Table 4 presents the average values of pore areas, measured in the 50 images by certified experts 
from CENEX. These results are compared with the areas calculated by the proposed algorithm. 

Table 4.  Average values of pore areas calculated by certified experts and the proposed algorithm in the 50 sample images. 

 Average Value 

Defect area calculated by expert 1.78 mm2 

Defect area calculated in this research 1.7968 mm2 

Area Difference 0.0496 mm2 

Percentage Difference 4.96% 

 

It is relevant to note that the area calculated by the algorithm shows a smaller size compared to 
that reported by the experts, which highlights the accuracy of the measurement performed by 
the algorithm. This difference could be related to the algorithm's ability to more accurately 
detect defect boundaries, resulting in slightly smaller defect areas compared to the experts 
measurements. This feature is of great importance as it demonstrates the algorithm's ability to 
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provide more accurate and consistent measurements in defect detection, which can be critical 
in inspection and quality control applications. 

The algorithm used in this study demonstrates a remarkable advantage in detecting defects that 
sometimes go unnoticed by the human eye of an expert. This ability to identify imperfections 
that might not be obvious to a human observer underlines the usefulness and potential 
improvement in the accuracy of the detection process. The technology provides a more detailed 
and objective view of the items under study, which can lead to a more thorough assessment of 
the quality of products or materials. The algorithm's ability to highlight defects that may have 
been previously overlooked by experts offers valuable insight into quality control and opens up 
new opportunities for more rigorous analysis in various industrial applications. The automated 
approach is designed to enhance efficiency, reduce errors, and provide a more objective 
assessment, offering distinct advantages when compared to the manual methods based on 
CENEX. 

4. Conclusions  

The findings of this study reveal that the application of an image processing-based approach for 
the segmentation and measurement of pores in low-quality industrial radiographic images has 
proven to be highly accurate and reliable. This is evidenced by the comparison of the defect 
areas calculated by the proposed algorithm with those provided by experts. The errors in the 
measurements are less than 0.1 mm², demonstrating the consistency and accuracy of the 
method. Furthermore, the number of detected contours matches the number of defects 
identified by experts, supporting the effectiveness of the approach in pore detection. With a 
precision of 97.52%, a recall of 98.33%, and an F1-Score of 97.92%, the method demonstrates 
its versatility in accurately identifying and measuring pores in low-quality images, making it a 
valuable tool for a broader range of applications. 

However, it is relevant to note that the algorithm has some limitations, detecting three false 
positives and two false negatives. Despite notable achievements in accuracy, recall and F1-Score, 
these results indicate instances in which the method incorrectly identified pores that were not 
defects (false positives) and failed to detect some real defects (false negatives). As a result of this 
investigation, future work aimed at addressing the identified shortcomings could involve 
refining the image processing-based approach for pore segmentation and measurement. 
Potential avenues for improvement may include the exploration of alternative filtering methods 
to optimize contrast and illumination in X-ray images. The imperative to study other filtering 
methods for enhancing contrast and illumination emphasizes the ongoing need for research to 
enhance accuracy and address potential sources of error within the methodology. This iterative 
refinement process is crucial for consistently advancing the reliability and precision of the 
method, ensuring its effectiveness across various industrial applications. 

This approach offers a valuable tool for industrial radiography specialists, with high potential 
for inspection and quality control applications. The results obtained indicate that the analysis 
approach employed is reliable and capable of accurately estimating defect areas in X-ray images. 
It serves as a valuable asset for industries necessitating meticulous inspection and maintenance, 
thus contributing to the overall reliability and functionality of agricultural equipment.  
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